

XXIV International Conference on Chemical Reactors CHEMREACTOR-24 September 12 - 17, 2021

STABILITY OF PLATINUM-RUTHENIUM CATALYSTS IN THE SELECTIVE SYNTHESIS OF H_2 AND CO

Zhang X.¹, Komashko L.V.¹, Murzin D.Y.², <u>Tungatarova S.A.^{1,3}</u>, Baizhumanova T.S.^{1,3}

¹Institute of Fuel, Catalysis and Electrochemistry, Almaty, 050010, Kazakhstan, <u>tungatarova58@mail.ru</u> ²<u>Åbo Akademi University</u>, <u>Process Chemistry Centre</u>, Turku, Finland ³al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan

INTRODUCTION. Synthesis gas is the main raw material for producing a wide range of petrochemical products. Correlation of the ratio of H_2 and CO in the composition of synthesis gas makes it possible to obtain liquid hydrocarbons or oxygenates, CH_3OH , CH_3COOH , CH_2O and C_2H_6O . The process of SCO of methane which proceeds with a molar ratio of hydrogen to carbon monoxide equal to 2.0, could become a reaction, an alternative reaction of steam reforming of methane for the production of synthesis gas. An alternative reaction of steam reforming of methane which proceeds with an optimal molar ratio of hydrogen to carbon oxide equal to 2.0.

Experimental. Pt-Ru catalysts supported on 2%Ce/(θ + α)-Al₂O₃ have been prepared by incipient wetness on (θ + α)-Al₂O₃ (100-200 µm, S = 57.7 m²/g) from water solutions of salts with subsequent heating and reduction with H₂+Ar at 623-1023 K. Tests were carried out in a continuous flow quartz micro reactor by a literature technique.

The activity of the developed catalytic systems in the process SCO of methane was

This paper presents data on the stability of the developed Pt-Ru = 1 : 1 (Pt : Ru = 0.7 : 0.3 at.%) catalyst. The activity of the catalyst was studied in the reactions of selective catalytic oxidation (SCO) and steam oxygen conversion (SOC) of methane into synthesis gas at low contact times. As a result of the conducted research, the methods of catalyst regeneration were determined.

determined in a catalytic flow unit at atmospheric pressure in a quartz microreactor with an internal diameter of 0.45 cm. 10 mg of the catalyst suspension was thoroughly mixed with quartz powder (particle size 0.2 mm in a ratio of 1: 43, height 20 mm). Then, larger quartz particles (1÷2 mm) were added to the reactor from above to a total layer height of 70 mm. After that, the initial reaction mixture was fed under the following conditions: $CH_4:O_2:Ar = 2.0 : 1.0 : 97.0.$ (%) T = 1173K, V = 9·10⁵ h⁻¹, τ = 0.004 s. In the process the SOC of methane: $CH_4:O_2:H_2O:Ar = 2.0 : 1.0 : 2.0 : 95.0, \%$, T = 1073 – 1173 K, V = 1·10⁵ - 9·10⁵ h⁻¹.

Experimental conditions: SOC of $CH_4 : O_2 : H_2O : Ar = 2.0 : 1.0 : 2.0 : 95.0.\%, T = 1073 - 1173 K, V = 1.10^5 - 9.10^5 h^{-1}$

Figure 1 - Influence of the volume velocity on change of X_{CH4} , $[H_2]$, [CO] in the SOC of methane by 1.0%Pt-Ru (1:1)/ 2%Ce/(θ + α)-Al₂O₃

Thus, determined that the process of SOC of methane with the optimum ratio of $CH_4: H_2O = 1: 1$ proceeds with complete conversion of the initial methane and maximum selectivity for the main products of the reaction without formation of CO_2 at 1123 K and volume velocity of $9\cdot10^5$ h⁻¹ and decreasing the temperature of the reaction to 1073 K and volume velocity of $1\cdot10^5$ h⁻¹ on 1.0%Pt-Ru (1:1)/ 2%Ce/(θ + α)-Al₂O₃ catalyst.

Condition the process of SCO of methane: $CH_4: O_2: Ar = 2.0: 1.0: 97.0, \%, T$ = 1173 K, V = $9 \cdot 10^5 h^{-1}$, $\tau = 0.004$ s and SOC of methane $CH_4: O_2: H_2O: Ar = 2.0: 1.0: 2.0: 95.0, \%, T = 1073$ K, V = $1 \cdot 10^5 h^{-1}$, $\tau = 0.036$ s Figure 2 – Change conversion of methane, selectivity of H_2 and CO, ratio of H_2/CO on 1.0 % Pt-Ru (1:1)/2%Ce/(θ + α)Al₂O₃ catalyst in time

Thus, it is established that the developed catalytic system 1.0%Pt-Ru(at. %)/2%Ce/(θ + α)-Al₂O₃ selectively works without losing its activity for 414 hours in the reaction of SCO and SOC of methane into synthesis gas.

Conclusion

During the study of the stability of a low-percentage granular sample of 1.0% Pt-Ru/2% $Ce/(\theta+\alpha)Al_2O_3$ catalytic system in the process of oxidation of methane, regeneration methods were found that allow stable conduct of the process of SCO and SOC of methane for 410 hours. As a result of the process, a synthesis gas was obtained with a ratio of $H_2/CO = 2.0$ without the formation of CO_2 , which is most suitable for its use in the Fischer-Tropsch synthesis of methanol and hydrocarbons. It is assumed that the reaction of SCO of CH_4 proceeds by a direct mechanism involving reduced Pt⁰, Ru⁰ and Pt-Ru nanoclusters detected by TEM research after testing the stability of the developed Pt: Ru (1:1) catalyst on a carrier. Pt-Ru/2%Ce/($\theta+\alpha$)-Al₂O₃, reduced in H₂ at 573K and 1173K, represents as nanoparticles of Pt° and Ru° (5-30 nm) in the reduced and partially oxidized condition, surrounded by smaller formations of CeAlO₃ surface compounds and Ce₆O₁₁ (3-10 nm) oxides. Presence of phases of the Pt-Ru alloy and Pt₁₃Ru₂₇ intermetallic compounds is possible because there are 3 basic lines at sets of interplanar distances of the mixed phases calculated on parameters of elementary cell.