

XXIV International Conference on Chemical Reactors CHEMREACTOR-24 September 12-17 2021

CFD modelling of reactors for reducing the environmental impact of SO₂ emissions

J. Jaschik¹, M. Tanczyk¹, M. Jaschik¹, D. Janecki², M. Mrozowski³ ¹ Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, Poland ² Institute of Environmental Engineering and Biotechnology, University of Opole, Poland ³ Research Network ŁUKASIEWICZ, Institute of Non-Ferrous Metals, Gliwice, Poland

Bubble reactor with a slot gas disperser

Diameter D, m	0.35	1.206
Height H, m	0.46	1.00-1.115
Type of stirrer	WP	WD
Diameter of impeller	0.07	0.400
Width of slot, mm	2	10
Height of slot, mm	30	185
Rotor speed, m·s ⁻¹	7	7
Flow rate of inlet gas		
$V_{a}, m_{N}^{3} \cdot h^{-1}$	5.3	150-750
SO ₂ concentartion		
inlet gas, vol. %	5.2-8.5	1.5-7.4
outlet gas, ppm	8-79	43-289
Temperature, °C	63-73	50-65
Slurry density, g·dm ⁻³	223-285	254-399

Experimental studies conducted in a 40 dm³ and 1.5 m³ bubble reactor with a slot gas disperser confirmed usefulness of developed technology for deep desulfurization of SO₂-rich gases with production of coarse-crystalline gypsum.

Geometry of the bubble reactor of 0.04 m³

Geometry of the bubble reactor of 1.5 m³ working capacity

CFD MODELLING OF HYDRODYNAMICS IN A BUBBLE REACTOR

Volume fraction of gas and turbulent Reynolds number ($k^2 \cdot \epsilon/\nu$) in a 0.04 m³ bubble reactor

Commercial program Fluent R18.1 from ANSYS Eulerian model extended to three phases - equations of conservation of mass and momentum are solved separately for each phase present in the system

 $\frac{\partial}{\partial t} (\alpha_k \rho_k) + \nabla (\alpha_k \rho_k \vec{u}_k) = 0 \qquad k = g, l, s$

 $\frac{\partial}{\partial t} (\alpha_k \rho_k \vec{u}_k) + \nabla (\alpha_k \rho_k \vec{u}_k \vec{u}_k) = -\alpha_k \nabla p + \nabla \cdot \bar{\bar{\tau}}_k + \alpha_k \rho_k \vec{g} + \vec{K}_k + \vec{F}_k$

Standard k- ε model of turbulence

 $\frac{\partial}{\partial t}(\rho_m k) + \nabla(\rho_m \vec{u}_m k) = \nabla\left(\left(\mu_m + \frac{\mu_{t,m}}{\sigma_k}\right)\nabla k\right) + G_{k,m} - \rho_m \varepsilon$

$$\frac{\partial}{\partial t}(\rho_m \varepsilon) + \nabla(\rho_m \vec{u}_m \varepsilon) = \nabla\left(\left(\mu_m + \frac{\mu_{t,m}}{\sigma_{\varepsilon}}\right)\nabla\varepsilon\right) + \frac{\varepsilon}{k}\left(C_{1\varepsilon}G_{k,m} - C_{2\varepsilon}\rho_m\varepsilon\right)$$

- The MRF model for rotational movement of the stirrer
- **Steady-state formulation**
- Gas bubble diameter 1·10⁻³ m
- **Gypsum particle diameter 35-10⁻⁶ m**
- **Power of mixing:**
 - $P_{turb} = \int \varepsilon \, dm$

 $P_{imn} = 2 \pi N M_{imn}$

Volume fraction of gas and turbulent Reynolds number ($k^2 \cdot \epsilon / v$) in a 1.5 m³ bubble reactor

Water velocity vectors on the plane fitting to the disperser blade in a 0.04 m³ (left) and 1.5 m³ (right) reactor

	,		thep	intp				
xperimental and calculated values of parameters in 1.5 m ³ reactor								
Flow rate of	Direction of	Pressure of inlet	Mixing p	ower, kW				

Flow rate of inlet gas,	Direction of stirrer rotation	Pressure of inlet gas, kPa		Mixing power, kW		
m _N ³∙h⁻¹		Exp.	Calc.	Exp.	P _{turb}	P _{imp}
175.52	,,_''	6.6	6.64	5.56	5.61	5.17
293.28	,,_'''	6.9	6.88	5.21	5.41	4.88
175.52	"+"	5.2	5.20	5.43	5.87	5.34
293.28	"+"	5.4	5.40	5.13	5.64	5.14

The result analysis confirmed the principal qualitative and quantitative conclusions resulting from the relevant experimental desulfurization studies.

Acknowledgements: The authors acknowledge financial support from the project funded by The Polish National Centre of Research and Development and KGHM Polska Miedź S.A. within the IIIrd call of the CuBR Joint Undertaking.

