

XXIV International Conference on Chemical Reactors CHEMREACTOR-24 September 12 - 17, 2021

CONVERSION AND PRESSURE DROP IN CATALYTIC PARTICULATE FILTERS

Rudolf Pečinka, Jan Němec, Petr Kočí*

Department of Chemical Engineering, University of Chemistry and Technology, Prague. Technická 5, Prague 166 28, Czech Republic *Corresponding author, e-mail: petr.koci@vscht.cz, Tel.: +420 220 44 3293

Introduction

- Combustion engines produce harmful particulate matter (PM, "soot")
 - size: $10^{-3} 10^{1} \mu m$,
 - composition: carbon, ash, sulfates, soluble organic fraction, adsorbed hydrocarbons, ...
- PM is captured in **particulate filters** (DPF for Diesel, GPF for gasoline fuelled engines)
 - exhaust gas flows through honeycomb substrate with alternately plugged channels –
 - gas passes through porous substrate walls (Figure 1)

Results

PRESSURE DROP

- Highest pressure drop: Z39 ($d_{90} = 4 \mu m$, on wall)
- Lowest pressure drop: Z8 (d_{90} = 0.3 µm, in wall)
- For in-wall coating, the pressure drop does not depend much on catalyst particle size
- For on-wall coating, the pressure drop is determined by cracks and uncoated parts
 - more cracks and less uniform on-wall layer: Z16 ($d_{90} = 0.3 \mu m$)
- The filters need to be combined with catalysts that control emissions of gaseous pollutants (CO, NO, and unburnt hydrocarbons)
 - catalytically active coating can be applied directly inside and/or onto porous filter walls
 - catalytic particulate filters reduce aftertreatment system's size and cost
- Key parameters of catalysed particulate filters depend on:

Figure 1: Particulate filter function

Experimental setup

Figure 3: Dependence of pressure drop on space velocity for all samples

CATALYTIC ACTIVITY

- Figure 4 shows CO light-off curves
 - Outlet CO concentration as a function of increasing temperature
- The light-off temperature and CO slip due to transport limitation were studied (see Table 2 and 3)

Table 2: Light-off temperatures					Table 3: Transport limitation of CO conversion				
T ₅₀ (°C)	Z7	Z8	Z16	Z39	CO slip (ppm)	Z7	Z8	Z16	Z39
50 000 h ⁻¹	159.7	150.6	154.2	165.1	50 000 h⁻¹	0	0	0	0
100 000 h ⁻¹	163.0	155.6	159.3	167.5	100 000 h ⁻¹	5	0	3	2
200 000 h ⁻¹	169 3	162.3	166 7	171 <i>/</i>	200 000 h ⁻¹	20	2	Δ	8

STUDIED SAMPLES

- Catalytic particulate filters
 - Pt/Al_2O_3 on cordierite
 - Catalyst particle sizes d₉₀: 0.3 μm, 4 μm
- Filter size: diameter 2.5 cm, length 6 cm (lab sample)

PRESSURE DROP MEASUREMENT

- The experiments were performed on special device for the pressure drop measurement
- The pressure drop was measured for twelve space velocities from 15 000 h⁻¹ to 240 000 h⁻¹

CATALYTIC ACTIVITY MEASUREMENT

- Laboratory tubular flow reactor with synthetic gas mixture (Figure 2 apparatus scheme)
 - **GHSV:** 50 000 h⁻¹, 100 000 h⁻¹ and 200 000 h⁻¹
- **Experiments:** linear temperature ramps of 5 °C/min between 80 and 400 °C
- Inlet mixture composition: 0.1 % CO, 5.0 % O₂, 94.9 % N₂
- Outlet gas analysis: FTIR gas analyzer, MS Hiden QGA

Table 1: Samples specification								
Sample ID	Coating location	Catalyst particle size [µm]						
Z7	Inside wall	4						
Z8	Inside wall	0.3						
Z16	On wall	0.3						
Z39	On wall	4						

Figure 4: Dependence of the output CO concentration on the reactor inlet temperature for all samples. GHSV: a) 50 000 h⁻¹, b) 100 000 h⁻¹, c) 200 000 h⁻¹

Conclusions

PRESSURE DROP

- In-wall coating retaining free porosity of the wall \rightarrow low pressure drop
 - however, low clean filtration efficiency can be expected
- On-wall layer \rightarrow higher pressure drop
 - cracks prevent excessive pressure drop

CATALYTIC ACTIVITY

- Only minor effect of coating location on the conversion at low flow rates
- Transport limitation of CO conversion observed at higher flow rates (sensitive to the coating distribution)

-> gas lines --> heated gas lines

Figure 2: Laboratory apparatus scheme

SAMPLE Z8 (d_{90} = 0.3 um, in-wall) APPEARS TO BE THE BEST FROM THE STUDIED SAMPLES

The lowest pressure drop and light-off temperature, no observable transport limitation

References

[1] Blažek M., Žalud M., Kočí P., York A., Schlepütz C.M., Stampanoni M., Novák V. Washcoating of catalytic particulate filters studied by time-resolved X-ray tomography. Chemical Engineering Journal 409 (2021), 128057. DOI:10.1016/j.cej.2020.128057

Acknowledgements

This work was financially supported by the Czech Science Foundation (GA 19-22173S) and specific university research (grant No. A1_FCHI_2021_004).

