
Design of multistage reactor systems for the production of high carbon number hydrocarbon fuels from furans by distributing multifunctional catalysts

Dong Jin Suh,*^a Hyeonmin Jo,^{a,b} Jae-Wook Choi,^a Jeong-Myeong Ha,*^{a,c} Jungkyu Choi^b

^aClean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. ^bDepartment of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea. ^cDivision of Energy and Environment, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.

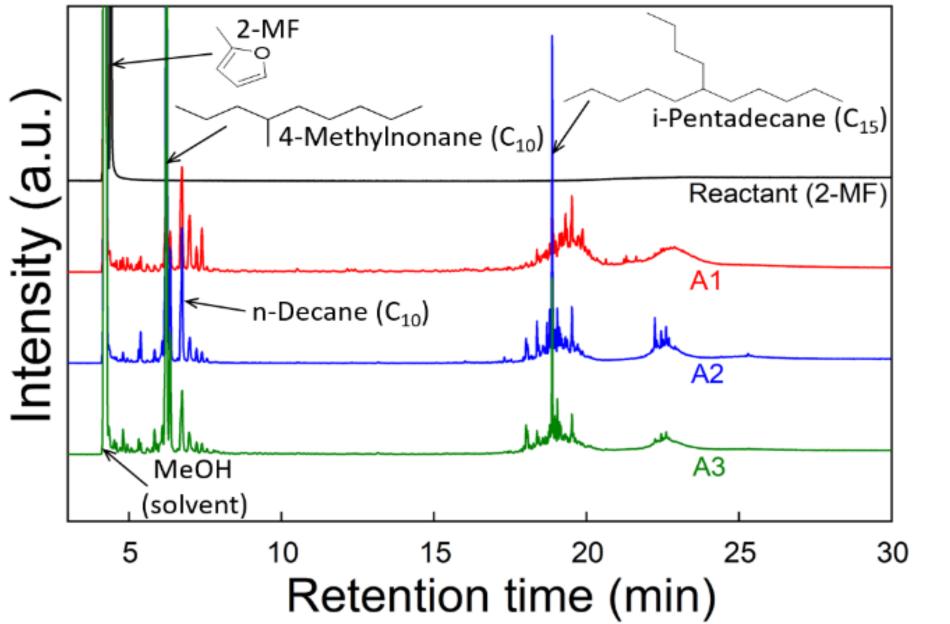
Corresponding authors: <u>djsuh@kist.re.kr</u> (D. J. Suh), <u>jmha@kist.re.kr</u> (J.-M. Ha)

- from furfural derivative. (ii) understanding the effects of catalysts on the reaction networks of furan-to-hydrocarbon fuels.

Reaction results depending on the catalysts

Three-step process results

Entry	Catalyst	WHSV (h ⁻¹)	Catalyst bed temperature (°C) ^b	Liquid yield (%) / oil yield (%) / diesel fraction oil yield (%) ^{c, d,e,f}	O/C ratio (atom/atom) ^{c, g}	H/C ratio (atom/atom) ^{c, g}
	Reactant (2-MF)				0.2683	1.2
A1	Step 1: 3 wt% Ru/WZr	0.33	93-103	84.3 / 67.5 / 54.4	0.0089	2.1
	Step 2: 3 wt% Ru/WZr	1.00	160-178			
	Step 3: 3 wt% Ru/WZr	1.00	250-260			
A2	Step 1: 20 wt% Ni/WZr	0.36	81-108	76.5 / 62.2 / 50.5	0.0096	2.2
	Step 2: 20 wt% Ni/WZr	1.09	162-177			
	Step 3: 20 wt% Ni/WZr	1.09	246-259			
A3	Step 1: 3 wt% Pd/WZr	0.38	86-107	84.9 / 68.8 / 45.1	0.0096	2.2
	Step 2: 3 wt% Pd/WZr	1.13	162-177			
	Step 3: 3 wt% Pd/WZr	1.13	248-259			

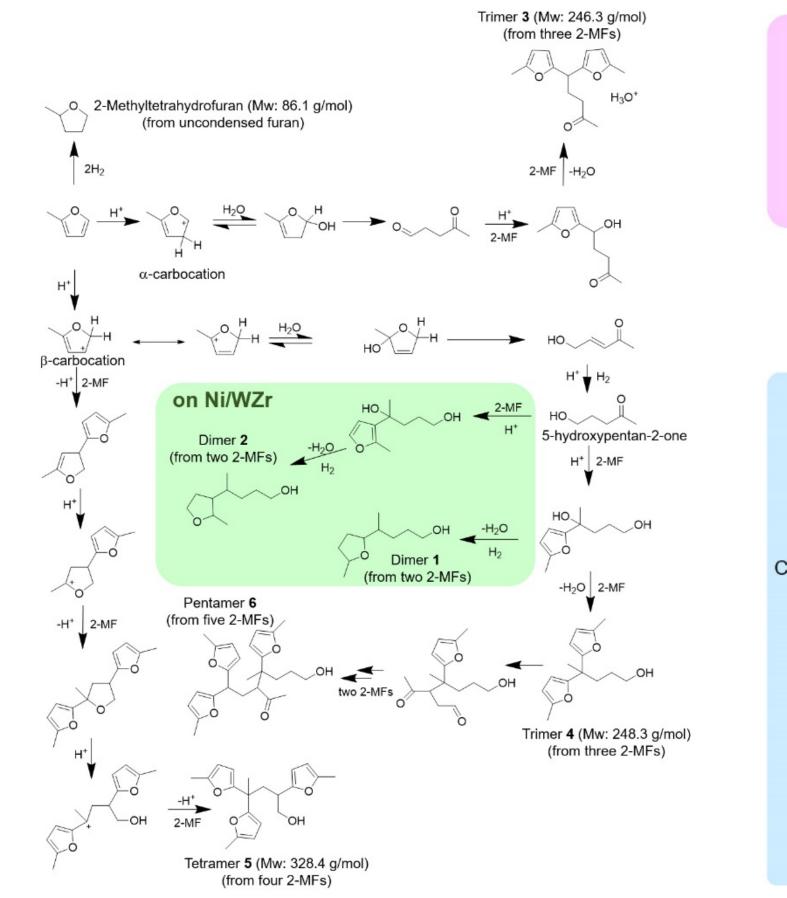

Product composition measured by SimDist-GC

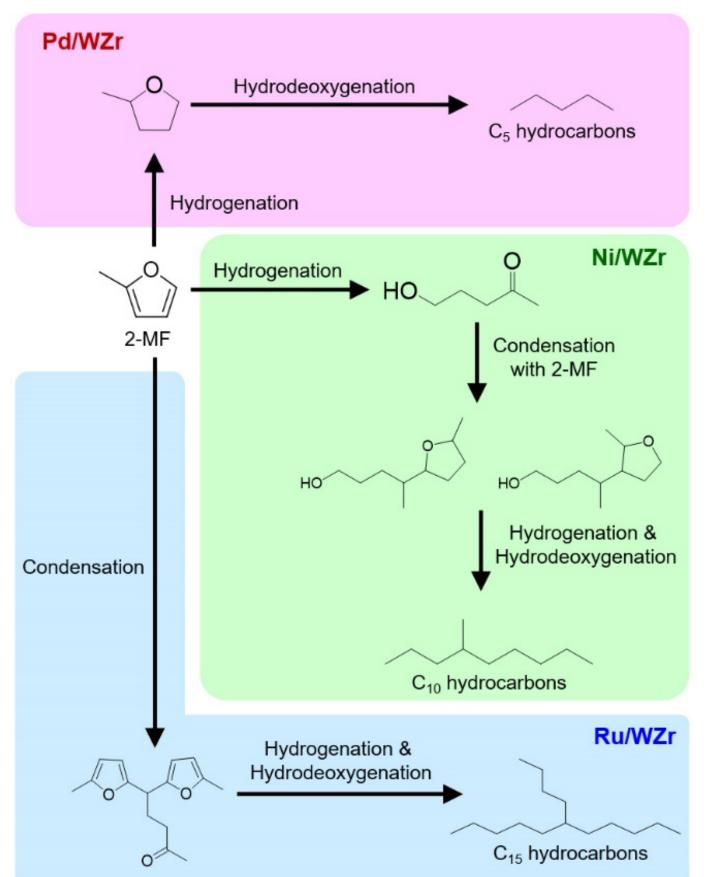
Entry	Product composition (wt%)				
	C5 (48-55 °C)	C10 (160-170 °C)	C15 (240-265 °C)		
A1	10	22	25		
A2	14	50	18		
A3	25	35	17		

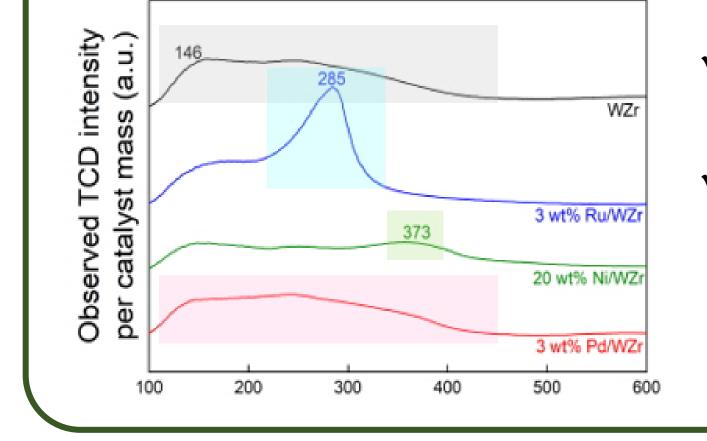
^aStep 1: condensation, step 2: hydrogenation, step 3: hydrodeoxygenation. All products were biphasic mixtures. ^bTemperature range measured in the catalyst bed is listed. ^cProducts were obtained at 3-9 h of time-on-stream. ^dLiquid yield (%) = (Mass of liquid product out)/(Mass of 2-MF reactant in) × 100. ^eOil yield (%) = (Mass of oil product out)/(Mass of 2-MF reactant in) \times 100. ^fSimDist-GC results of oil product were used to measure diesel fraction ranged at 160-340 °C. ^gElemental analysis results of oil products were used.

- ✓ Preferred formation of C5 deoxygenated hydrocarbons: Pd/WZr
- ✓ Preferred formation of C10 deoxygenated hydrcarbons: Ni/WZr
- Preferred formation of C15 deoxygenated hydrocarbons: Ru/WZr _

Selectivity was manipulated by the selection of catalysts




Characterization of catalysts


Catalyst characterization by NH₃ TPD, N₂ physisorption, and CO chemisorption.

Catalyst	Acid density (µmol/g catalyst)	BET surface area (m²/g)	BJH peak pore width (nm)	[CO]/ [Metal] (mol/mol)
WZr	117 (4.8)	57	7.7	_
3 wt% Ru/WZr	135 (4.1), 239 (6.5)	52	7.9	0.233
20 wt% Ni/WZr	n.a. (n.a.)	55	8.3	0.011
3 wt% Pd/WZr	117 (4.7), 395 (8.3), 302 (8.7)	41	7.8	0.024

Characterization of catalysts

- ✓ High acidity and high metal surface area of Ru/WZr were observed.
- \checkmark Reaction selectivity should be adjusted by the acidity and hydrogenation activity of catalysts.

Conclusion

- \checkmark WZr-supported metals, comprising composites of Ni, Pd, and Ru nanoparticles and WZr powder, were used for three different catalysis reactions: acid-catalyzed metal-acid-catalyzed hydrogenation, metal-catalyzed condensation, and hydrodeoxygenation.
- \checkmark The preferred production of C₅, C₁₀, and C₁₅ hydrocarbons from 2-MF on Pd, Ni, and Ru/WZr, respectively, could provide a useful means of modifying the applications of xylose-derived fuels.
- \checkmark Reaction network depending on the catalysts was investigated based on the GC-MS/FID and NMR measurement of reaction products/intermediates.

This research was supported by the Technology Development Program to Solve Climate Change of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2020M1A2A2079798).