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Abstract. We find conditions of existence of stable cycles in some models
of gene networks regulated by negative feedbacks and by simple combinations of
negative and positive feedbacks. Special algorithms and programs for numerical
simulations of these results are elaborated as well.

Introduction. Questions of existence of periodic trajectories in natural
gene networks and in their mathematical models play an important role in the
theory of the gene networks [6, 7]. Similar questions appear in various domains of
pure and applied mathematics, and even in the case of 2-dimensional dynamical
systems very famous problems, such as the Center-Focus problem, are still open.

Some sufficient conditions of existence of cycles and corresponding stability
questions for odd-dimensional nonlinear dynamical systems of chemical kinetics
were studied in our previous publications [1, 2, 3, 4] where these systems were
considered as models of gene networks functioning.

The behavior of trajectories of these systems in even-dimensional dynami-
cal systems of this type, or in presence of positive feedbacks in corresponding
gene networks, is much more complicated. Usually, such systems have several
stationary points and cycles. Some of these points and cycles are stable, and
boundaries between the basins of these attractors contain unstable stationary
points and/or cycles. Description of the phase portraits of these systems, vi-
sualization of these boundaries and detection of these unstable cycles are hard
problems both in pure and in numerical mathematics.

At first, we study here simple gene networks models, where the regulation
is realized by the negative feedbacks only. In this rather simple case, we have
detected in our numerical experiments non-uniqueness of limit cycles. Then
we consider some models of gene networks regulated by combinations of neg-
ative and positive feedbacks. More complicated gene networks models can be
interpreted as combinations of these ”elementary” models, see [1, 2, 7].

1. Gene networks models with negative feedbacks. We start with
consideration of odd-dimensional nonlinear dynamical system of chemical kinet-
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ics in dimensionless form:




dx1

dt
= f1(x2k+1)− x1;

dx2

dt
= f2(x1)− x2;

. . . . . .

dx2k

dt
= f2k(x2k−1)− x2k;

dx2k+1

dt
= f2k+1(x2k)− x2k+1.

(1)

Here fi are positive monotone decreasing functions defined for xi ≥ 0. These
variables denote concentrations of substances in gene networks. We assume
also that fi(xi−1) → 0 for xi−1 → ∞, i = 1, 2, . . . 2k + 1, and that if i = 1
then xi−1 = x2k+1. Sometimes we express the system (1) in the vector form
dX
dt

= V(X). As above, the coordinates of the vector X are x1, . . . , x2k+1, and

we call the vector V(X) the velocity vector field of the system (1).
According to the standard biological interpretations, see [7, 8, 9], the mono-

tone decreasing of these functions simulates negative feedbacks in gene network,
and the monotone increasing here corresponds to positive feedbacks.

The summand fi(xi−1) in the i-th equation describes the relation between
the rate of synthesis of substance ” xi ” and the concentration of the substance
” xi−1”. The negative terms in these equations correspond to the natural process
of degradation of biological molecules. In applications, these negative feedbacks
are described by the Hill’s functions f(w) =

a

1 + wn
, where a, n > 0. And

the Glass-Mackey functions Λ(w) =
a · w

1 + wn
, the logistic functions Λ(w) =

a·w·(b−w), and other unimodal functions describe variable feedbacks, which are
positive below some threshold value of concentration of the regulating substance,
and are negative for larger values of these concentrations. Some gene networks
models with this type of regulation are considered below.

Proposition 1. The dynamical system (1) has exactly one stationary point.

The proof follows directly from any attempt to find the stationary point from

the system of equations
dX
dt

= V(X) = 0, and from the simple observation that
any composition of odd monotonically decreasing functions is again monotoni-
cally decreasing function, see [4, 7] for details. Denote this stationary point by
M∗, its radius-vector by X∗ = (x∗1, x

∗
2, . . . , x

∗
2k, x∗2k+1) , and the maximal values

fi(0) of the functions fi(xi−1) by Bi.
It is easy to verify that all trajectories of the vector field V(X) eventually

enter the parallelepiped Q = [0, B1]× [0, B2] . . .× [0, B2k]× [0, B2k+1] and never
leave it. Hence, Q is an invariant domain of the dynamical system (1).

Now we consider the partition of Q by 2k+1 hyperplanes {xi = x∗i } contain-
ing the stationary point M∗ ∈ Q and parallel to the coordinate hyperplanes.
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This gives us a collection of 22k+1 smaller parallelepipeds which can be enumer-
ated by binary indices: {ε1ε2ε3 . . . ε2k+1} :=

{
X ∈ Q | x1 ≷ε1 x∗1, x2 ≷ε2 x∗2, x3 ≷ε2 x∗3, . . . , x2k+1 ≷ε2k+1 x∗2k+1,

}
.

Here X = (x1, x2, x3, . . . , x2k+1), and ε1, ε2, ε3, . . . ε2k+1 ∈ {0, 1}. All the
relations here are defined as follows: the symbol ≷0 means ≤, and the symbol
≷1 means ≥. The faces of these parallelepipeds are contained either in ∂Q, or
in the interior of Q in the intersection {xi = x∗i } ∩ int(Q). Analysis of the
velocities {fi(xi−1)−xi} at the points of the interior faces implies the following

Proposition 2. If xi−1 < x∗i−1 then ẋi

∣∣∣
xi=x∗i

> 0. Hence all trajectories

starting in {..εi−200εi+1..} enter the adjacent parallelepiped {..εi−201εi+1..}.
Conversely, if xi−1 > x∗i−1 then ẋi

∣∣∣
xi=x∗i

< 0, hence all trajectories starting

in the domain {..εi−211εi+1..}, enter the adjacent parallelepiped {..εi−210εi+1..}.
In both cases, the index changes on the i-th place only.

Just for brevity, we use the notations for some of these parallelepipeds:
Q0,2m+1 = {0101 . . . 00 . . . 01}, the first of two zeros in ”00” stands on the

place number 2m + 1;
Q0,2m = {1010 . . . 00 . . . 0}, the first of two zeros in ”00” stands on the place

number 2m;
Q1,2m+1 = {1010 . . . 11 . . . 0}, the first of the ”11” stands on the place num-

ber 2m + 1;
Q1,2m = {0101 . . . 11 . . . 01}, the first of the ”11” stands on the 2m-th place.
The intersection Π = Q1,2k+1∩Q0,1 is contained in the hyperplane x1 = x∗1.

It follows from the previous proposition that the trajectories of all points of all
other faces of Q1,2k+1 enter inside Q1,2k+1, and the trajectories of all points of
Π pass from Q1,2k+1 to Q0,1 . So, we obtain the diagram

Q1,2k+1 → Q0,1 → Q1,2 → Q0,3 → . . . → Q1,2k−1 → Q0,2k → . . . . (2)

All trajectories of the system (1) pass through the common face of two adjacent
parallelepipeds ”along” the arrows, and, from Q0,2k to Q1,2k+1. Hence, the
union Q4k+2 of all these 4k + 2 parallelepipeds is an invariant non-convex
domain of the dynamical system (1), and it contains all possible cycles of (1).

Actually, each of these parallelepipeds Qε,j , where j = 1, 2, . . . 2k + 1 and
ε ∈ {0, 1}, can be reduced to corresponding triangle prism Pε,j ⊂ Qε,j so that
the union P4k+2 of these 4k + 2 prisms remains an invariant domain of the
system (1). All arguments below can be reproduced for this smaller domain
P4k+2 as well.

2. Existence of cycles and stability questions. Below, we denote as
usual by [x] the integer part of a real number x. The linearization of the system
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(1) near its stationary point M∗ has the form

dX
dt

=




−1 0 . . . 0 f ′1(x
∗
2k+1)

f ′2(x
∗
1) −1 . . . 0 0

0 f ′3(x
∗
2) . . . 0 0

. . . . . . . . . . . . . . .
0 0 . . . f ′2k+1(x

∗
2k) −1




(X−X∗). (3)

Let f ′1(x
∗
2k+1) · f ′2(x∗1) · f ′3(x∗2) . . . f ′2k+1(x

∗
2k) = −a2k+1, a > 0.

The eigenvalues of this linearization satisfy the equation

(−1− λ)2k+1 − a2k+1 = 0,

and one of them is real: λ1 = −1 − a < 0. It corresponds to the eigenvector
+ e1 with positive coordinates. All other eigenvalues here are complex:
Reλ2,3 := Reλ2 = Reλ3 = −a · cos 2π

2k+1 − 1 < 0,
. . .
Reλ2k,2k+1 := Reλ2k = Reλ2k+1 = +a · cos π

2k+1 − 1.
Here λ1 < Reλ2,3 < Reλ4,5 < Reλ2k,2k+1.
If Reλ2k, 2k+1 < 0 then the point M∗ is stable.
The stationary point M∗ is called hyperbolic if Reλ2k,2k+1 > 0, and there

are no imaginary eigenvalues in the linearization of the dynamical system at this
point, i.e., none of these Reλ2s,2s+1 vanishes. Let M∗ be hyperbolic. Denote
by 2m the total amount of the eigenvalues λj with positive real parts, so

if a · sin
π ·

(
4
[

k
2

]
− 2k + 3

)

2(2k + 1)
> 1, then m =

[k + 1
2

]
. (4)

Since the eigenvectors ± e1 of the linearization (3) show the directions from
the point to the parallelepipeds {00 . . . 00} and {11 . . . 11}, we can cut off the
invariant domain Q4k+2 a small cylindric neighborhood U = B2m× I2k+1−2m

of the point M∗ . Same operation can be done with the invariant domain P4k+2.
Here the plane containing a small ball B2m corresponds to the eigenvalues λj

with positive real parts, and the plane containing small parallelepiped I2k+1−2m

corresponds to λ1 and to other eigenvalues with negative real parts. Hence, the
reduced domains Q′4k+2 = Q4k+2 \ U and P ′4k+2 = P4k+2 \ U are invariant
for the system (1) as well. According to the well-known ”torus principle”, we
obtain the theorem:

Theorem 1. If the stationary point M∗ of the system (1) is hyperbolic then
the invariant domain P ′4k+2 contains at least one cycle of this system.

Note that ”torus principle” and the topological fixed point theorem do not
imply stability or uniqueness of the cycle in this situation. However, in some
cases this uniqueness and stability near the stationary points can be derived
from the Andronov-Hopf bifurcation theorem.
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As it was shown in [6], for each cycle of the system (1) its projection along
any vector with positive coordinates does not have self-intersections. So, in
visualization of such cycles of high-dimensional dynamical systems, it is conve-
nient sometimes to consider projection of the trajectories along the vector e1

or other vectors with positive coefficients.

Figure 1: Projection of trajectories of 9-D system (5) onto 3-D plane P1,8,9.

The figures 1, 2 show orthogonal projections of three trajectories of symmet-
ric dynamical system of the type (1) in the case k = 4, onto 3-dimensional planes
P1,8,9 and P1,6,7 corresponding to the eigenvalues λ1 , λ8, λ9 and, respectively,
λ1 , λ6, λ7 of the linearization (3). In the similar way we define 2-dimensional
planes P8,9 and P6,7 etc. The real eigenvalue λ1 < 0 corresponds to the vertical
direction on the figure 2, and

fi(w) =
130

1 + wn
, for all i , X∗ = (2, 2, 2, 2, 2, 2, 2, 2, 2) ∈ R9

+. (5)

Here n = 6 , and all these trajectories start ”near” the 2-dimensional plane P8,9

in a small neighborhood of the stationary point M∗ . Projection of the cycle of
the dynamical system on the figure 1 is the ”9-gone”, and on the figure 2 this
cycle projects onto the curvilinear triangle at the bottom. The projection of the
point M∗ is in the center of the figure 1, and on the top of the figure 2.

Some results on stability of cycles in the phase portraits of the nonlinear
dynamical systems of the type (1) can be obtained with the help of theorems of
Russell Smith, see [10].
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Figure 2: Projections of same trajectories onto 3-D plane P1,6,7.

Theorem 2, ([4]). If the conditions of the theorem 1 are satisfied and for

some η > 0 and for all i, 1 ≤ i ≤ 2k + 1, the inequalities

−η ·
(
1+sin

2π

2k + 1
· sin π

2k + 1

)
< f ′i(xi−1) < −η ·

(
1− sin

2π

2k + 1
· sin π

2k + 1

)
,

hold in the invariant domain P ′4k+2 then this domain P ′4k+2 contains a stable
cycle of the system (1).

It is well-known (see [5]), that any nonlinear dynamical system is topolo-
gically equivalent to its linearization in some small neighborhood W of its
hyperbolic stationary point. Consider linearization of symmetric dynamical
system of the type (5). If the exponent n is sufficiently large, see (4), then

Reλ4, 5 < 0 < Reλ6, 7 < Reλ8, 9,

and hence, the 2-dimensional planes P8,9 and P6,7 are covered by unwinding
trajectories of this linear dynamical system. Hence, the neighborhood W con-
tains two invariant 2-dimensional manifolds of the system (5), which are covered
by unwinding trajectories of this nonlinear dynamical system.

We have demonstrated in our numerical experiments, that in contrast with
the figures 1 and 2, trajectories of the system (5) with starting points, say M8,9

and M6,7, ”near” these two planes P8,9 and P6,7, respectively, have different
limit cycles, as it is shown on the figure 3. The small curvilinear triangle here
(it is red, as on the figure 2) is the projection of the limit cycle of the trajectory
with starting point M8,9, and the large (blue) triangle is that of the trajectory
with starting point M6,7. Both these triangles seem to be homothetic on this
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Figure 3: Projections of two cycles of the same system onto 3-D plane P1,6,7.

picture, though the shapes of corresponding cycles in the ambient space R9 are
quite different. The projection of the stationary point M∗ is seen here on the
top of the figure.

Note that near the point M∗ the 2-dimensional plane P8,9 is contained in
the domain P4k+2, and the plane P6,7 intersects P4k+2 just by one point, M∗.

Similar non-uniqueness of the cycles should be detected in higher-dimensional
(and in asymmetric) analogues of the system (1). It seems to the authors that
there are as many different cycles, as pairs of complex conjugate eigenvalues
λ2j , λ2j+1 of the linearization (3), such that Reλ2j,2j+1 > 0. So, for sufficient
large values of n, there should be two different cycles in the phase portrait of
the system (5) (or (1)) in the cases 2k + 1 = 7, 2k + 1 = 9. For 2k + 1 = 11,
2k + 1 = 13 there are three cycles etc., see (4). But, at the present time we do
not have any proof of this hypothesis. All difficulties here happen outside of W .

3. More complicated gene networks models. The same approach can
be used in considerations of models of gene networks with more complicated
collections of feedbacks. We assume here that all the functions fi are strictly
monotonically decreasing, and each function Λj is unimodal and describes a
combination of the negative and positive feedbacks, as above. Some particular
3-dimensional cases of such gene networks models were studied in [1].
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Consider for example the dynamical system :




dx1

dt
= f1(xl)− x1,

. . . . . .

dxm

dt
= fm(xm−1)− xm,

dxm+1

dt
= Λm+1(xm)− xm+1,

. . . . . .

dxl

dt
= Λl(xl−1)− xl.

(6)

in the case l = 6, m = 5. As in the proofs of the proposition 1 and the theorem
1, we find the stationary points. Let Ψ(x6) := f5(f4(f3(f2(f1(x6))))). Since
this function strictly monotonically decreases, its inverse function Ψ−1 is well-
defined. The stationary points X∗ = (x∗1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6) of the system (6)

are determined from the equation

Λ6(Ψ(x∗6)) = x∗6,

and from x∗1 = f∗1 (x∗6), x∗2 = f∗2 (x∗1) x∗3 = f∗3 (x∗2), x∗4 = f∗4 (x∗3), x∗5 = f∗5 (x∗4).
Let xM

5 be the maximum point of the unimodal function Λ6(x5). If

Ψ−1(xM
5 ) < Λ(xM

5 ), (7)

then the system (6) has exactly one stationary point X∗I such that x∗I5 < xM
5 .

In some applications this condition (7) is not satisfied, and we have here two
more stationary points X∗II and X∗III such that x∗II

5 > xM
5 and x∗III

5 > xM
5 .

The behavior of trajectories of the system (6) near these two points is much
more simple than near the point X∗I .

The derivatives of the functions fi are negative, and we have the inequality
dΛ6/dx5 > 0 near the point X∗I , so the linearization of the system (6) at this
point has the following eigenvalues λ3,4 = −1± i · a, and

λ1,2,5,6 = −1 + a · [±
√

3
2 ± i · 1

2 ], where

a6 = − df1

dx6
· df2

dx1
· df3

dx2
· df4

dx3
· df5

dx4
· dΛ6

dx5
.

As above, all derivatives here are calculated at the stationary point X∗I . Thus,
we can construct its invariant neighborhood

Q = [x−1 , x+
1 ]× [x−2 , x+

2 ]× [x−3 , x+
3 ]× [x−4 , x5

4]× [x−5 , x+
5 ]× [x−6 , x+

6 ].

Its boundaries are determined as follows: x−6 and x+
6 are the proximate to x∗I6

solutions of the equation Λ6(Ψ(Λ6(Ψ(x6)))) = x6, i.e., x∗6 ∈ [x−6 , x+
6 ]. In the

same way we define other segments Ij = [x−j , x+
j ]. So, x−1 = min

x6∈I6
f1(x6);
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x+
1 = max

x6∈I6
f1(x6); x−2 = min

x1∈I1
f2(x1), x+

2 = max
x1∈I1

f2(x1); etc.

As in the proof of the theorem 1, we decompose the invariant neighborhood Q
by the hyperplanes parallel to the coordinate ones and containing the stationary
point X∗I . In this domain Q the unimodal function Λ6 satisfies the conditions:

If X ∈ Q then Λ5(x5) < x∗I6 for x5 < x∗I5 and Λ5(x5) > x∗I6 for x5 > x∗I5 .
Hence, the trajectories transition rules from one small parallelepiped in this
decomposition to another remain almost the same, as in the proposition 2. The
direction of this transition changes to the opposite one at the points of the
hyperplane x5 = x∗I5 only. So, we get a diagram, analogous to (2):

{101010} → {101011} → {001011} → {011011} → {010011}
↑ ↓

{101000} {010111}
↑ ↓

{101100} ← {100100} ← {110100} ← {010100} ← {010101}
The union Q(12) of these 12 parallelepipeds is an invariant domain of (6).

Theorem 3. If a · cos π
6 > 1, and the condition (7) is satisfied then the

6-dimensional dynamical system (6) (l = 6, m = 5) has a cycle in Q(12).

This theorem is proved exactly as the theorem 1. The figure 4 shows pro-

Figure 4: Projections of trajectories of the system (6) onto 3-D plane P1,2,6.

jections of three trajectories of the system (6) onto 3-D plane corresponding to
the eigenvalues λ1, λ2 and λ6. These trajectories start near the stationary point
and tend to the limit cycle. Here

f1(x6) =
7

1 + x3
6

; f2(x1) =
7

1 + x3
1

; f3(x2) =
8

1 + x3
2

;
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f4(x3) =
12

1 + x3
3

; f5(x4) =
11

1 + x3
4

; Λ6(x5) =
18x5

1 + x2
5

.

Similar results can be obtained for other dynamical systems of the type (6)
using the same approach. In particular, we can make there any permutation of
the equations. An analogue of the theorem 2 can be obtained for the dynamical
systems of the type (6) as well.

All numerical experiments and figures in the present paper were realized by
the Program GeneNetworkModeller composed by A.A.Akinshin.
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