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Three Epochs of Entropy

1. The daughter of energy, dS = ∆Q/T , from

Clausius to Boltzmann;

2. The Boltzmann–Gibbs-Shannon entropy

H = −S =
∫

f(x, v) ln f(x, v)dxdv ;

3. Non-classical entropies: Rényi, Morimoto–

Csiszár, Cressie–Read, Tsallis, Bregman,...
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Three+ Points of View on Entropies

1. The Boltzmann–Gibbs-Shannon (BGS) en-

tropy is fundamental, all other entropies

are just tools for fitting (“monarchy”);

2. Each non-classical entropy has its own area

of application where it works better than

others (“democracy”);
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3. Some nonclassical entropies are more fun-

damental than others because of their spe-

cial properties like various generalizations

of the additivity axiom (“aristocracy”).

We propose: Entropy may be considered as

a measure of uncertainty. Non-uniqueness of

the entropy makes the uncertainty uncertain.

In our talk we will try to utilize this uncertainty

of uncertainty and to understand how to use

all the non-classical entropies together.



Plan of the Talk

1.Csiszár–Morimoto divergencies and popular non-classical

entropies;

2.Rényi entropy;

3. Entropy production by a Markov process;

4. Generalized additivity property and the selected en-

tropies;

5. Entropy: a function or an order?

6. Markov orders;

7. Maxima of all entropies and sets of the most random

distributions.
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Csiszár–Morimoto divergencies

Most of the relative entropies have the form

proposed independently in 1963 by Csiszar and

Morimoto

Hh(p) = Hh(P‖P ∗) =
∑

i
p∗ih





pi
p∗i





where h(x) is a convex function defined on

the open (x > 0) or closed x ≥ 0 semi-axis.

Hh(P‖P ∗) depends on two probability distri-

butions pi and p∗i .
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The Csiszár–Morimoto divergencies are the Lya-

punov functions for all Markov chains with

equilibrium P ∗ = (p∗i ): for the Kolmogorov

equations

dpi
dt

=
∑

j, j 6=i
(qijpj − qjipi)

with a positive equilibrium distribution P ∗ =

(p∗j)

dHh(P‖P ∗)

dt
≤ 0 .
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The Morimoto H-theorem

dHh(P‖P ∗)

dt
=

=
∑

i,j, j 6=i
qijp

∗
j





h





pi
p∗i



 − h







pj

p∗j





 + h′




pi
p∗i











pj

p∗j
−
pi
p∗i











 ≤ 0

The last inequality holds because of the con-

vexity of h(x): h′(x)(y − x) ≤ h(y) − h(x)

(Jensen’s inequality).
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The Most Popular Divergences Hh(P‖P ∗)
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1. Let h(x) be the step function, h(x) = 0 if

x = 0 and h(x) = −1 if x > 0. In this case,

Hh(P‖P ∗) = −
∑

i, pi>0
1

−Hh is the number of positive pi > 0 and does

not depend on P ∗ (the Hartley entropy, 1928).

2. h = |x− 1|,

Hh(P‖P ∗) =
∑

i
|pi − p∗i |

this is the l1-distance between P and P ∗.
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3. h = x lnx,

Hh(P‖P ∗) =
∑

i
pi ln





pi
p∗i



 = DKL(P‖P ∗)

the Kullback–Leibler divergence (the relative

BGS entropy);

4. h = − ln x,

Hh(P‖P ∗) = −
∑

i
p∗i ln





pi
p∗i



 = DKL(P
∗‖P )

The relative Burg entropy. This is again the

Kullback–Leibler divergence, but for another

order of arguments.
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5. Convex combinations of h = x lnx and

h = − lnx also produces a remarkable fam-

ily of divergences: h = βx lnx − (1 − β) lnx

(β ∈ [0,1]),

Hh(P‖P ∗) = βDKL(P‖P ∗)+(1−β)DKL(P ∗‖P )

The convex combination of divergences be-

comes a symmetric functional of (P,P ∗) for

β = 1/2. There exists a special name for this

case, “Jeffreys’ entropy”.
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6. h = (x−1)2

2 ,

Hh(P‖P ∗) =
1

2

∑

i

(pi − p∗i )
2

p∗i

This is the quadratic term in the Taylor expan-

sion of the relative Botzmann–Gibbs-Shannon

entropy, DKL(P‖P ∗), near equilibrium. Some-

times, this quadratic form is called the Fisher

entropy.



7. h = x(xλ−1)
λ(λ+1)

,

Hh(P‖P ∗) =
1

λ(λ+ 1)

∑

i
pi











pi
p∗i





λ

− 1







This is the Cressie–Read family of power di-

vergences, HCR λ. If λ → 0 then HCR λ →

DKL(P‖P ∗), this is the classical BGS relative

entropy; if λ→ −1 then HCR λ → DKL(P ∗‖P ),

this is the relative Burg entropy.
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8. For HCR λ only the maximal terms “sur-

vive” in the limits λ → ±∞ . For λ → ±∞ we

use (λ(λ+ 1)HCR λ)
1/|λ|:

HCR ∞(P‖P ∗) = max
i







pi
p∗i







− 1

HCR −∞(P‖P ∗) = max
i







p∗i
pi







− 1

There may be two types of highly non-equilibrium

states: with a high excess of current probabil-

ity pi above p∗i and, inversely, with an small

current probability pi with respect to p∗i .
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9. The Tsallis relative entropy corresponds to

the choice h = (xα−x)
α−1 , α > 0.

Hh(P‖P ∗) =
1

α− 1

∑

i
pi











pi
p∗i





α−1

− 1







For this family we use notation HTs α.

14



The Rényi entropy (1961) of order α > 0 is

HR α(P ) =
1

1 − α
log





n
∑

i=1
pαi





The relative Rényi entropy

HR α(P‖P ∗) =
1

α− 1
log







n
∑

i=1
pi





pi
p∗i





α−1





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HR α(P‖P ∗) =
1

α− 1
ln c;

HCR α−1(P‖P ∗) =
1

α(α− 1)
(c− 1);

HTs α(P‖P ∗) =
1

α− 1
(c− 1)

where c =
∑

i pi(pi/p
∗
i )
α−1.
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Lyapunov Functionals for Markov Chains
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The Lyapunov functionals Hh do not depend

on the kinetic coefficients qij directly. They

depend on P ∗. This independence of the ki-

netic coefficients is the universality property.

Theorem 1. If a Lyapunov function H(p) for

the Markov chain is of the trace–form (H(p) =
∑

i f(pi, p
∗
i )) and is universal, then f(p, p∗) =

p∗h( pp∗) + const(p∗), where h(x) is a convex

function of one variable. P.Gorban, 2003, S.

Amari, 2009
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Let P and P ∗ be products of marginal distribu-

tions: pjk = qjrk and p∗jk = q∗jr
∗
k. Then some

entropies reveal the additivity property with

respect to joining of independent systems.

*The BGS relative entropy

DKL(P‖P ∗) = DKL(Q‖Q∗) +DKL(R‖R∗).

*The Burg entropy

DKL(P ∗‖P ) = DKL(Q∗‖Q) +DKL(R∗‖R) .

*The Rényi entropy

HR α(P‖P ∗) = HR α(Q‖Q∗) +HR α(R‖R∗).

19



Let us consider three important properties of

the Lyapunov functions H(P‖P ∗): (1) univer-

sality, (2) H is a trace–form function, H(P‖P ∗) =
∑

i f(pi, p
∗
i ) and H is additive for composition

of independent subsystems.

Theorem 2. If a function H(P‖P ∗) has all the

properties 1)-3) simultaneously, then f(p, p∗) =

p∗ih
(

p
p∗

)

, H(P‖P ∗) =
∑

i p
∗
ih

(

pi
p∗i

)

where h(x) =

−C1 lnx+ C2x ln x, C1,2 ≥ 0.
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Let us allow the entropy be additive in an-

other scale: there exists such a function of one

variable ψ(x) that the function ψ(H(P‖P ∗)) is

additive for the union of independent subsys-

tems: if P = (pij), pij = qjrj, p
∗
ij = q∗jr

∗
j , then

ψ(H(P‖P ∗)) = ψ(H(Q‖Q∗)) + ψ(H(R‖R∗)).
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Theorem 3. If a C1-smooth divergence H(P‖P ∗)

is (1) universal Lyapunov function , (2) a trace–

form function and (3) additive in some scale

then, up to monotonic transformation, it is

either the CR divergence or a convex combi-

nation of the Botlzmann–Gibbs–Shannon and

the Burg entropies.
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Entropic aristocracy

HKL−B β =
∑

i
[βpi−(1−β)p∗i ] ln





pi
p∗i



 , β ∈ [0,1]

HCR λ =
1

λ(λ+ 1)

∑

i
pi











pi
p∗i





λ

− 1





 , λ ∈ (−∞,∞)
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Entropy: a Function or an Order

24



MaxEnt

1. An “equilibrium distribution” P ∗ is given;

P ∗ may be considered as the “most disor-

dered” distribution with respect to some a

priori information.

2. We do not know the current distribution

P , but we do know some linear functionals,

the moments u(P ).
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3. We do not want to introduce any subjec-

tive arbitrariness in the estimation of P and

define it as the “most disordered” distribu-

tion for given value u(P ) = U and equilib-

rium P ∗:

H...(P‖P ∗) → min subject to u(P ) = U



Idea of Markov Order

Any Markov process with equilibrium P ∗ in-

creases disorder.

We can consider P0 as a possible extremely

disordered distribution on the condition plane,

if for any Markov process with equilibrium P ∗

the solution of the Kolmogorov equation P (t)

with initial condition P (0) = P0 has no points

on the plane u(P ) = U for t > 0.
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P
0
 

Possible trajectories 

of Markov processes 

u(P)=U 

a) P
0
 is a possible extremely 

    disordered distribution 

P
0
 

Possible trajectories 

of Markov processes 

u(P)=U 

b) P
0
 is not a possible extremely 

    disordered distribution 
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Cones of possible velocities Q for the Markov chain with

three states and equilibrium (p∗i = 1/3).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 

A2 

A3 

12
 

23
 

31
 

1 

2 

3 

 

2 

1 

3 

 

2 

3 

1 

 

3 

1 

2 

 

3 

2 

1 

 

1 

3 

2 

 

1 2 

3 

 

2 

1 3 

 

2 3 

1 

 

1 3 

2 

 

3 

1 2 

 

1 

2 3 

 

28



The cone of possible velocities depends in the

current distribution P and on equilibrium P ∗:

Q(P,P ∗)

Theorem 4.Any extreme ray of Q(P,P ∗) cor-

responds to a Markov process with two states

and the same equilibrium: Ai ⇄ Aj.

It is quite surprising that the Markov order

is generated by the reversible Markov chains

which satisfy the detailed balance principle.
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The set of conditionally extreme points of the Markov

order on the moment plane in two general positions.

For several of the most important divergences these

minimizers are pointed out. (For the Markov chain with

three states and symmetric equilibrium (p∗i = 1/3)).

a)

Extreme points 

of the Markov 

order on L

L

Extreme points of the 

CR divergences, 

b)

Extreme points 

of the Markov 

order on L

L

Extreme points of the 

CR divergences on L,
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If the moments are just some of pi then coincide with

the unique conditionally extreme point of the Markov

order.

Conditional 

minimiser of all 

CR divergences 

Extreme point 

of the Markov 

order on L

L
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Conclusion

1. It would be nice to have “the best entropy”

for any class of problems. But from a certain

point of view, ambiguity of the entropy choice

is unavoidable, and the choice of all condi-

tional optimizers instead of a particular one is

a possible way to avoid an arbitrary choice.
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2. The set of these minimizers evaluates the

possible position of a “maximally random” prob-

ability distribution. For many MaxEnt prob-

lems the natural solution is not a fixed distri-

bution, but a well defined set of distributions.

3. Minimization of all functions Hh(p), which

depend on a functional parameter h, seems to

be too complicated. The Markov order allows

us to find this set of possible “maximally ran-

dom” probability distribution.
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4. It is quite surprising that the Markov order

is generated by the reversible Markov chains

which satisfy the detailed balance principle.

5. Locally, the Markov order is described by

the piecewise constant polyhedral cones and

the description of the set of the maximally

random distribution turns into a routine linear

programming problem.
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6. For the nonequilibrium systems, the most

uncertain distribution is not unique: there ex-

ists a phenomenon of “uncertainty of uncer-

tainty”.
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