Численное исследование пространственной структуры шликера из оксида бериллия в процессе литья

З.К. САТТИНОВА

Казахский национальный университет им. аль-Фараби, г. Алматы, Казахстан e-mail: sattinova_zamira@mail.ru

Г.И. РАМАЗАНОВА

Казахстанско-Британский технический университет, г. Алматы, Казахстан e-mail: gauhar.r@yandex.ru

Приводятся результаты численных расчетов моделирования процесса формования керамики ИЗ оксида бериллия методом горячего литья. Математическая модель описывает движение жидкого термопластичного шликера в формообразующей полости с учетом отвердевания. Определены литейные характеристики, обеспечивающие однородные свойства керамики в процессе формования методом горячего литья.

Введение

Движение и теплообмен шликера в литьевой форме можно рассматривать как совокупность следующих этапов: движение и теплообмен шликера в жидком состоянии; движение и теплообмен шликера с учетом кристаллизации; движение и теплообмен отливки в твердом состоянии [1].

Для получения однородной суспензии на стадии заполнения формообразующей полости и выдержки под давлением, необходимо обеспечить максимальное разрушение структуры термопластичного шликера из порошка оксида бериллия и связующего вещества. К числу наиболее эффективных методов воздействия на перерабатываемый материал считается обработка ультразвуком [2]. В процессе отвердевания необходимо достигнуть минимального трения о стенки формообразующей полости и максимальной пластичности шликера, не разрушая вновь образующуюся структуру отливки. Проведение детального анализа движения и теплообмена позволит более обоснованно подойти к процессу формования керамических изделий.

Реологическая модель термопластичного шликера

Термопластичный шликер представляет собой двухфазную дисперсную систему из порошка оксида бериллия и органической связки. Для описания реологического свойства термопластичного шликера использовались модели Балкли-Гершеля (1) и Шведова-Бингама (2), соответственно:

$$\tau = \tau_0 + \left(k\frac{du}{dr}\right)^n,\tag{1}$$

$$\tau = \tau_0 + \mu \frac{\partial u}{\partial r} \tag{2}$$

Рис. 1. Схема формообразующей полости

где τ -напряжение сдвига; τ_0 -предельное напряжение сдвига; k-мера консистенции; n-индекс течения, характеризующий степень неньютоновского поведения среды.

Математическая модель

Рассматривается неизотермическое течение термопластичного шликера оксида бериллия в формообразующей полости плоской формы, на внешней поверхности которой происходит теплообмен с охлаждающей жидкостью.

Горячая шликерная масса со скоростью $u_0 = 2$ мм/мин поступает в узкий зазор высотой h = 7,5мм (рис. 1). Вследствие высокой вязкости шликера критерии Рейнольдса и Прандтля составляют $Re = 2,28 \cdot 10^{-5}, Pr = 2,5 \cdot 10^3$.

Двигаясь вдоль полости, шликер охлаждается за счет теплообмена через внешнюю стенку. Контур охлаждения разделен на три части. В первой части температура охлаждающей воды – 73°С, во второй – 59°С, в третьей – 45°С. Общая длина канала 0,108 м, длина горячей, теплой и холодной части: $L_1 = 0,022$ м, $L_2 = 0,045$ м, $L_3 = 0,041$ м. Скорость литья направлена вертикально вниз по оси OX.

Математическая модель процесса включает уравнения движения, неразрывности и энергии с учетом диссипации кинетической энергии, температурной зависимости реологических свойств и теплоты кристаллизации:

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{dp}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial y} (\tau) + \rho g, \tag{3}$$

$$\frac{\partial\rho u}{\partial x} + \frac{\partial\rho v}{\partial y} = 0,\tag{4}$$

$$\rho u c_p \frac{\partial T}{\partial x} + \rho v c_p \frac{\partial T}{\partial y} = \frac{\partial}{\partial y} (\lambda \frac{\partial T}{\partial y}) + L_k \frac{d\rho}{dt} + \mu \left(\frac{\partial u}{\partial y}\right)^2.$$
(5)

По данным лабораторных исследований были найдены теплофизические свойства термопластичного шликера оксида бериллия посредством ультразвуковой активации в интервале температур $30^{\circ}C \leq T \leq 80^{\circ}C$ [2, 3, 4, 5], которые описываются эмпирическими формулами:

$$\rho = 0,8325 + 0,0618 \cdot \cos\left[\pi \left(0,035T/T_0 - 5,15\right)\right],$$

$$\mu = 1,17 \cdot 10^9 \cdot \exp\left(-0,28 \cdot T/T_0\right) + 49,4,$$

$$\lambda = 1,6 + 4,8 \cdot \exp(-0,017 \cdot T/T_0),$$
(6)

$$\tau = 2,61 \cdot 10^{10} \exp(-0,339 \cdot T/T_0) + 22,34,$$

$$c_p = 1000 \cdot \exp(T/(T_0 \cdot 290)).$$

Градиент давления в уравнении движения определяется из условия сохранения массового расхода:

$$\int_{0}^{h} \rho_{j}^{n+1} u_{j}^{n+1} dy = \dot{m}.$$
(7)

Граничные условия

при
$$x = 0$$
: $u = u_0, \quad v = 0, \quad T = T_0,$
при $x > 0, \quad y = 0$: $\frac{\partial u}{\partial y} = \frac{\partial T}{\partial y} = v = 0.$
при $x > 0, \quad y = h$: $-\frac{dp}{dx} = \left(\tau_{0w} + \left(\mu_0 \frac{\partial u}{\partial y}\right)_w\right)$
(8)

Обозначив температуру воды в горячем, теплом и холодном контурах T_1, T_2, T_3 соответственно, имеем граничные условия для температуры на внешней стенке:

при
$$0 \le x < l_1, \qquad -\lambda \frac{\partial T}{\partial y} = k'(T_m - T_1),$$

при $l_1 \le x < l_2, \qquad -\lambda \frac{\partial T}{\partial y} = k'(T_m - T_2),$ (9)
при $l_2 \le x < l_3 \qquad -\lambda \frac{\partial T}{\partial y} = k'(T_m - T_3)$

При стационарном режиме q_w представим в виде

$$q_w = \alpha_1 \left(T_m - T_w \right) = k' \left(T_w - T \right) = k \left(T_m - T \right), \tag{10}$$

где k'-коэффициент теплопередачи от внутренней поверхности стенки к охлаждающей жидкости; k-коэффициент теплопередачи от шликера, текущего в полости, к охлаждающей жидкости; α_1 -коэффициент теплоотдачи от шликера, текущего в полости, к внутренней поверхности стенки. Коэффициенты α_1 , k', k связаны соотношением

$$\frac{1}{k} = \frac{1}{\alpha_1} + \frac{1}{k'}.$$
 (11)

Для плоской формообразующей полости:

$$\frac{1}{k'} = \frac{d_M}{\lambda_s} + \frac{1}{\alpha_2},\tag{12}$$

где $d_5 = 4A/S$ -эквивалентный диаметр; A-площадь поперечного сечения; s-периметр полости; λ_s -коэффициент теплопроводности материала стенки; α_2 -коэффициент теплоотдачи от наружной поверхности стенки к охлаждающей жидкости.

$$\alpha_2 = \frac{2\lambda_b}{d_3 \ln (4d_3/d_5)}.$$
(13)

Внутренний коэффициент теплоотдачи α_1 и закон изменения теплообмена Nu определяются выражением:

$$\alpha_1 = \frac{q_w}{(T_m - T_w)}, \quad Nu = \frac{\alpha_1 d_e}{\lambda}.$$
(14)

Решение системы уравнений (3)-(9) проводится численным методом. Разностные аналоги получены схемой Кранка-Никольсона второго порядка точности и решаются методом прогонки [7]. Градиент давления находится из условия сохранения массового расхода (7) на каждом маршевом слое.

Обсуждение результатов расчета

Расчеты проводились с использованием реологических моделей Шведова-Бингама и Балкли-Гершля при двух значениях толщины формообразующей плоской полости h = 0.0075 м и h = 0.015м, шириной b = 0.045м, скорости литья $u_0 = 2$ мм/мин. Температура охлаждающей воды для горячего, теплого и холодного контуров поддерживалась 73°, 59° и 45° С. Температура кристаллизации шликера согласно опытным данным $T_k = 59$ °C [2].

На рисунках 2, 3 приведены результаты расчетов по моделям Шведова–Бингама и Балкли–Гершеля при $Re = 2, 28 \cdot 10^{-5}$.

Из сравнения результатов расчетов (рис. 2, 3) следует, что профили температуры и скорости по модели Балкли-Гершеля показывают раннее наступление процесса отвердевания за счет широкого интервала скорости сдвига и распределения полей температуры по плоскому сечению. По результатам расчетов приведенного режима температура шликерной массы вблизи стенки достигнет температуру кристаллизации на расстоянии x = 79мм (модели Шведова-Бингама) и x = 67мм (Балкли-Гершеля), а во внутренней части полости шликер все еще находится в жидком состоянии. Как видно из рисунков, значительные градиенты температуры возникают в пределах теплого, вблизи границы холодного контуров. Это обусловлено выделением тепла при фазовых переходах, а также изменением теплофизических параметров шликера при переходе через эти границы.

Деформация профилей скорости пределах теплого и холодного контуров приводит к росту градиента температуры и теплообмена с охлаждающей жидкостью. Наступивший процесс затвердевания сопровождается фронтом кристаллизации вблизи стенки на расстоянии x = 67мм. С переходом в холодный контур небольшой интервал температуры кристаллизации приводит к резкому ускорению процесса затвердевания по всему сечению полости. Фронт кристаллизации шликерной массы является плоским. Усадка также будет равномерной и не образует раковин и пустот, приводящих к потере прочности керамических изделий из оксида бериллия.

Рис. 2. Распределение температуры по модели Шведова-Бингама

Как видно из рисунка 4, расчетные данные, полученные с привлечением модели Балкли-Гершеля, показывают хорошее согласие с результатами опытов и промышленных испытаний.

Рис. 3. Распределения температуры и скорости по модели Балкли-Гершеля

Рис. 4. Изменение плотности по длине плоской полости

Рис. 5. Изменение плотности теплового потока по длине формообразующей полости

Заключение

Результаты исследования показывают, что математическая модель описывает всю стадию формования керамики с учетом изменения ее агрегатного состояния. Расчетные данные позволили выявить закономерности движения и теплообмена, определяющие внутреннюю структуру процесса формования, превращение вязкопластичного жидкого шликера в твердопластичное состояние и установить влияние режимных параметров (скорости, температуры охлаждающей жидкости, конструктивных данных) на процесс отвердевания шликерной массы. Расчетные данные показывают применимость реологической модели Балкли-Гершеля в более широком диапазоне литейных систем для процесса формования керамики по сравнению с моделью Шведова-Бингама. Найдены оптимальные условия процесса формования керамики способом горячего литья, которые позволяют получить на выходе отвердевшее изделие из оксида бериллия с однородной структурой.

Многочисленные численные расчеты движения и теплообмена термопластичного шликера в плоской полости позволили: прогнозировать условия появления дефектов при формировании изделий, получить распределения полей скорости и температуры, показывающие динамику охлаждения и отвердевания литейной системы, отследить изменение температурно-фазовых полей в процессе отвердевания.

Список литературы

- [1] ДОБРОВОЛЬСКИЙ А.Г. Шликерное литье. М.: Металлургия, 1977. 240 с.
- [2] ШАХОВ С.А., БИЦОЕВ Г.Д. Применение ультразвука при производстве высокотеплопроводных керамических изделий. Усть-Каменогорск, 1999. 145 с.
- [3] ШАХОВ С.А., ГАГАРИН А.Е. Реологические характеристики термопластичных дисперсных систем, обработанных ультразвуком // Стекло и керамика. 2008. № 4. С. 19–21.
- [4] ZHAPBASBAYEV U.K., KALTAYEV A., BITSOYEV G.D., TURNAYEV S.K. Hydrodynamics of moulding of ceramic articles from beryllium oxide with ultrasonic activation // Proceedings ASME International Mechanical Engineering Congress and Exposition, Orlando, 2005. 177 p.
- [5] ДВИНСКИХ Ю.В., ПОПИЛЬСКИЙ Р.Я., КОСТИН Л.И., Кулагин В.В. Теплофизические свойства термопластич-ных литейных шликеров некоторых высокоогнеупорных окислов // Огнеупоры. 1979. № 12. С. 37–40.
- [6] СЕБЕСИ Т., БРЭДШОУ П. Конвективный теплообмен. Физические основы и вычислительные методы. Пер. с англ. М.: Мир, 1987. 592 с.
- [7] АНДЕРСОН Д., ТАННЕХИЛ ДЖ., ПЛЕТЧЕР Р. Вычислительная гидромеханика и теплообмен. В 2-х т. Т. 2: Пер. с англ. М.: Мир, 1990.