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The initial boundary value problems for systems of two parabolic equations are
studied when the conditions with respect to the time variable are given only for one of
the unknown functions. The problems are considered in the case where along with the
initial data for one of the functions either the value of the same function is given at
the final moment of time or the integral of this function with respect to time is known.
The existence and uniqueness of the solution to these problems are established.

1. The preliminaries

Let Q be a domain in R" with a smooth boundary 99, Q is the closure of Q, T is an

arbitrary positive real number, Q7 = (0,7) x Q2 and St = (0,T") x Q. Throughout this

paper we use the notation: || - ||z and (-, -)r are the norm and the inner product of R",

respectively; || - || and (-,-) are the norm and the inner product of L?(2), respectively;
o

|-l; and (-, '>]. are the norm of WQJ(Q) and the duality relation between WQJ (©) and

W2_j (2), respectively; as usual W(2) = L%(Q). We also denote by H4(Q) the Hélder
space of functions dependent on the variables x € Q, ¢ > 0.
Let M, L, B : W3(Q) — (W3 (£2))* are linear differential operators of the form

M = —diviM(z)V) + (m,V)g +m(x)I, (1.1)
= —div(L(z)V) + (L, V)r + I(2)], (1.2)

= —div(B(z)V) + (b, V) g + b(z)I, (1.3)

respectively, where M(z) = (my;(x)), L(x) = (lij(z)) and B(x) = (b;;j(x)) are matrices
of functions, 4,5 = 1,2,...,n; m, 1 and b are vector functions; m,[,b are scalar
functions; I is the identical operator.

We assume that the following conditions are fulfilled.

L my(z) € HHQ)NWE(Q), 1 (2), bij(z) € WL(Q), 4,5 =1,2,--+ ,n, 0 <r < 1;

€ (H"(Q) N WZ(Q))™, m(x) € H(Q) N WEO(Q), Lb e (L*® (Q))", l(x),b(x) €
L>(Q).

I1. M and L are operators of elliptic type, that is, there exist positive constants my

and g, k = 1,2, such that for any v €Wy (Q)
mallo]|? < (Mv,v); <ma|vl, (1.4)

hllllf < (Lo, ), < laflolf3. (1.5)

In this paper we are studying the following problems.
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Problem 1. For given functions gx(z), fr(t,z), Bx(t,x), k = 1,2, o(x,p), up(z) and

wp(x) find the pair of functions {u (¢, x), ua(t, x)} satisfying the system of equations
uir + Muy = g1(x)Ur + g2(x) Uz + fi(t, x), (1.6)
ugs + Lug = Buy + o(x,u1) + fa(t, x), (t,z) € Qr, (1.7)

and the conditions

utli=0 = uwo(z), uil=r = ur(x), x € (), (1.8)

uilsy = Bi(t, ). (1.9)
Here U;(z) = fOT widt, i =1,2.
Problem 2. For given functions f;(¢,z), B;(t,z), i = 1,2, u(x) and ¢(x) find the pair
of functions {u (¢, x),ua(t,z)} satisfying the system of equations

w1t + Muy = Bug + fi(t,x), (1.10)
ugt + Lug :fQ(t,-’L'), (t>$) € Qr, (111)

the conditions
ut)i=r —utli=o = p(x), Ui(z)=¢(x), €. (1.12)

and the boundary data (1.9).
In addition to Problems 1 and 2 we consider two auxiliary problems for the linear
parabolic equation

u + Lu = F(t, x) (1.13)
with the operator L of the form (1.2), the boundary condition
u|ST :B(t7x)' (114)
and initial data B
Ult=1 — ult=0 = p(z), x €, (1.15)
or
T J—
/ u(t)dt = ¢(x), z €. (1.16)
0

The existence and uniqueness of the solution to the problems (1.13)—(1.15) and (1.13),
(1.14), (1.16) is guaranteed by the following theorems.

Theorem 1.1. Let the assumptions I, II of the operator L be fulfilled. Let u € La(),
F e L20,T; Wy (Q)), B € L=(0,T; W,'*(09)), B € LX(Sr). Then the problem (1.13)
~(1.15) has a unique weak solution u in the class Y = L?(0,T; W1 (Q))NL>®(0,T; L*(Q2))
and the solution depends continuously on F, u and 3, i.e.,

ey < Gl + 181 e o a2 00y + 18l 22052 + 1PNl 2o w1
where the positive constant C depends on n, T, 1, lo and mesS).

Theorem 1.2. Let the assumptions I, II of the operator L be fulfilled and 02 € C?.
Let F € LX(Qr), ¢ € W2(Q), B € L=(0, T; W5/*(09)), B € L*(Sr). Then the problem
(1.13)-(1.14),(1.16) has a unique weak solution u in the class Y and the solution
depends continuously on F, u and (3, i.e.

lally < CLILRN + 181 e o ransv2 oy + 1Bl 2050 + 1Pl 20

where the positive constant C depends on n, T, l1, lo and mesS2.
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Theorems 1.1 and Theorem 1.2 are reduced to the special cases of Theorems 3 and
7 of |2], respectively, by substitution of the function w with a function w + p in
(1.13),(1.14),(1.16) where w is a new unknown function, Mp = 0 and p|g, = 5.

2. The problem with the initial and final conditions for u,

In this section we are interested in finding the sufficient conditions for the existence
and uniqueness of a solution to Problem 1. By a solution of Problem 1 we mean the
pair {uy,us} of the class V = {{ug,uz}ur € C([0,T); WH()), ure € L2(0,T; W(R)),
ug € L=(0,T; L2(Q))NL2(0, T; W), ug € L2(0,T; W, 1(2))} which satisfies (1.6)—
(1.9).
Theorem 2.1. Let the assumptions I, II be fulfilled and 02 € C*. Let also
i) fi € CT([0, T, W3(Q) N H'(Q)), fi € C(0,T;W5(Q), fur € L*(Qr), fr €
C(0,T; H™+2(0Q) N W, *(99)), pu € C7([0,T); H™(9Q)) N L2(0,T; W, *(99)),
Bur € L2(0,T; Wi'*(09)), o, ur € HH2(Q) NWE(Q), 0 < r < 1, fo € LX(Qr),
By € L2(0, T3 W5 (00);
i) gr(x), k = 1,2, are twice continuously differentiable in S0, there exists a constant

v > 0 such that |go(z)| > v for all (x,p) € Q x (—00,+00); a(x,p) is continuous
in Q x (—o0,+00) and ||a(x,v)|| < +oo for all v € W(S).

Then Problem 1 has a unique solution {ui,us} € V and uyy € L*(0,T; W2(Q)).

Proof. We prove the theorem in two steps. In the first step we establish the existence
and uniqueness of the solution to the problem (1.6),(1.8),(1.9) as an inverse problem
of recovering an unknown source function Us. The second step consists of finding us
as the solution of the problem for (1.7) with the boundary data (1.9) and proving the
uniqueness of ug provided that u; and Uy are known.

Step 1. Let us consider the problem (1.6),(1.8),(1.9). We integrate (1.6) with respect
to t on [0,7] and divide the result by 7. In view of (1.8) this yields

oul + Muy :gl(x)U1+gz(x)U2+f1 (2.1)

where du; = T (ur(z)—ug(x)) and v = T~} fUTv dt for every v € L'(0,T). Subtracting
(2.1) from (1.6) we obtain

w1 + Muy = fi —ﬁ + du.

Introducing the function h as a solution of the problem Mh = 0, hlpq = (1 and
rewriting the last equality in terms of a new function w = u; — 43 — h + h we are led
to the equation

wy + Mw = fi — f1 +6up — hy = Fi(t, 2). (2.2)

From (1.8) and (1.9)
W= — Wlt=0 = Tous — h(T, ) + h(0,z) = wr(x). (2.3)
wl|an = 0. (2.4)

By Theorem 1.1, the problem (2.2)—(2.4) has a unique generalized solution w € Y and

lwly < {15l + 1P oo ravs o -
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Let us prove that in the hypotheses of the theorem w € C(0,T; W(£2)). To do this
we consider the iterative scheme

wi + Mw® = Fi(t, ) (2.5)
w5|t:0 = ws_1|t:T — (5u1. (2 6)
wilon =0, s=1,2,..; w’ = 0. (2.7)

By [1, p. 364] the solution w* € C7([0,T]; H"*%(Q)) and w; € C7([0,T]; H"(Q)).
Subtracting (2.5) for w® from the same equation for w**! gives

witt —wf + Mw*™ — Mw® = 0. (2.8)

We multiply (2.8) by M (w**T! —w?*) in terms of the inner product of L?(2) and integrate
by parts in the first term of the resulting equation. This yields

1d
5£<ws+l o wS,M(wSH o w5)>1 + HM(ws+1 o w5)H2 -0

Multiplying this equation by e* where o > 0 we obtain

1d

2 dt [ at<ws+1 ws’ M(ws+1 _ U)S)>1:| eat”M(w8+1 _ ws)”Q_

+ae® (Wit —w®, M(wtt — w®)), =0. (2.9)

In view of the ellipticity of the operator M there exists a constant mg > 0 such that
for any v € W2(Q), v|go =0
[Mul| = ms[lv]2. (2.10)

Hence

> (mg — ownz)Hw‘(H'1 — w5||%. (2.11)

||M(ws+1 _ U)S)”Q . <,ws+1 _ ws7 M(ws+1 _ w5)>1 >

Choosing a < m3/m; and integrating (2.9) with respect to ¢ from 0 to 7, 0 < 7 < T,
we get

1 T
§<w3+1 —w®, M(w! — ws)>1 + (mi — amg)/ |+ — w2 et gt
0
1 _ _ _
< 5 “T<ws —w’ 1,M(ws —w’ 1)>1‘t:T (2.12)
by (2.10). From (2.11) and (2.12) it follows that
<ws+1 ws M s+1 > |7— < —aT<ws _ ’[US_I,M(’LUS _ ws—1)>1’t:T
< e*O‘T(S*U(wl, Mw1>1}t:T < e*O‘TS<wT, MwT>1 (2.13)
and .
/ lwst — w3 dt < (m3 — amg)*le*aT(S*1)<wT, MwT>1. (2.14)
0

for every s = 1,2, .... Equation (2.8) and the last inequality enable to obtain the estimate
for wi™ — wy. Namely,

T
/ [w; T — wi|? dt < my(m§ — amg) e T (wp, Muwr),. (2.15)
0
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Here the positive constant my4 depends on max,co{|m;(x)|, i m(x)|, |m(z)|}.

Under the hypotheses of the theorem w; + Mw® € WZ(Q) N H"(Q) for every t €
[0, 7], (w§ + Mw®); € L*>(0,T; W2(Q2)) and w*(0,x),w*(T,x) € WZ(£2). Moreover, the

equation (2.5) is valid for all (¢,2) € Qp. Acting on (2.5) and (2.6) with the operator
M we obtain the following equalities for function W*® = Mw® — Fy(t,x):

W+ MW?* = Fy, (2.16)

We|i—o = W* = — Mwy + T6Fy (2.17)
where §F) = T~Y(F (T, x) — F1(0,z)). From (2.5), (2.7) we have

W?laq = 0. (2.18)

The problem (2.16)—(2.18) has a unique solution W#* € L?(0,T; W2(12)). Repeating the
arguments led to (2.14) and (2.15) one can obtain estimates for W*. Namely,

T
/ (Wt — W3 dt < (m§ — amg) e T (Mwyp — TSFy, M(Mwr — TSFy)),,
0

(2.19)
T
/0 (Wt =W |2 dt < ma(md — ama) e T D (Mwy — TOFy, M(Mwr — TOF)),
(2.20)
for every s =1,2,....
Furthermore, differentiation (2.16) with respect to t gives
Wi+ MW = Fig. (2.21)
By (2.16),
Weli=o = Wi i=r + Wo() (2.22)
where Wy(x) = M?wr — TS(F14 + M Fy). From (2.18) we have
W|oa = 0. (2.23)
Repeating the arguments led to (2.19) and (2.20) we obtain the estimates
T
/ Wit — W3 dt < (mf — amg) e T D (Wo, MWG),, (2.24)
0
T
/ Wit = Wi|? dt < ma(m3 — amg) e *TED (W, MWh), (2:25)
0

for every s =1,2,....

The inequalities (2.14), (2.15), (2.19), (2.20), (2.24), (2.25) implies that the sequence
w® has a limit w € L2(0,T; W3 (Q)) and wi — w; in L2(0,T; WH(Q)) as s — +oo.
Then w® — w in C([0,T); Wi (Q)) as s — +oc which implies that there exist the traces
w* (0, z),w* (T, x) € WZ(Q) and w*(0,z) — w(0,2), w*(T,z) — w(T,z) in Wy (Q) as
s — +o0. Passing to the limit in (2.5)-(2.6) we conclude that w satisfies equation (2.2)
for almost all (t,z) € Qr, the data (2.3) for almost all z € Q. By (2.7), the boundary
condition (2.4) also asserts for w.

Step 2. Let us come back to the problem (1.7)-(1.12). Using the definition of w and
(1.2)—(1.4) we can now find u

up =w~+ ug — w(0,z) — h+ h(0,x) (2.26)
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and express Uy from (2.1) in terms of u; as

T
Uy = /0 up dt = [6uy + My — g1(z)Us — f1](g2(2)) ™ = ¥(x). (2.27)

Thus, we obtain the problem for equation (1.8) on us with the conditions (1.12) and

(2.27). By the smoothness of w and (2.26), u; € C([0,T]; W(Q)), ¥(z) € WE(Q).

According Theorem 1.2 the problem (1.8), (1.12), (2.27) has a unique solution ug €

L(0,T; L*(Q))NL2(0, T; W) and ug; € L2(0,T; Wy 1(2)). The theorem is proved.
Let us consider Problem 1 with the equation

uir + Muy = g1(z)Uy + AUz + fi(t, x) (2.28)
instead of (1.6) where A is an operator of the form
A= —div(A(z)V) + (a,V)r + a(z)] (2.29)

where A(z) = (a;j(x)) is a matrix of functions, 4,57 = 1,2,...,n; a = a(z) is a vector
function; a(x) is a scalar function. If there exist positive constants ax, k = 1,2, such

that for any v €W, (Q)
aloll? < (Av,v), < aslol, (2:30)

then the operator A is invertible and Theorem 2.1 remains true for the problem (1.7)-
(1.9),(2.28).

Theorem 2.2. Let the assumptions of Theorem 2.1 be fulfilled. Let a;j(z) € WL (),
ij = 1,2,---,n, a € (L®(Q))", a € L>®(Q) and (2.30) holds. Then the problem
(1.7)-(1.9),(2.28) has a unique solution {ui,us} € V and uiy € L*(0,T; W3(Q)).

Proof. Let us consider the problem (1.8),(1.9),(2.28). We integrate (2.28) with
respect to ¢ on [0,7] and divide the result by T" again. In view of (1.8) this yields

ouy + Muy = ¢1 (.1‘)U1 + 92(1‘)AU2 + le. (2.31)

Subtracting (2.31) from (2.28) and rewriting the last equality in terms of the function w
we come to the problem (2.2)—(2.4). As was proved, this problem has a unique solution
w € C([0,T); WHR)), wy € L2([0,T]; WHR)) and wy € L?(Qr). Using the definition
of w we find u; and express Uy from (2.31) in terms of u; as

Us = gq(z) + A y() (2-32)

where ¢ satisfies the equation Ag = 0 and ¢lgpg = fOT Badt. Thus, we obtain the problem
for equation (1.8) on wuy with the conditions (1.12) and (2.32). In the hypotheses of
the corollary ¢ € W2(2), uy € C([0,T); W(2))and (x) € W2(S2). Hence q(z) +
A~Yp(z) € W2(Q). According to Theorem 1.2 the problem (1.8), (1.12), (2.27) has a
unique solution uy € L>®(0,T; L3(Q)) N L2(0, T; W4 () and ug, € L2(0,T; W, H()),
which completes the proof.

3. The problem with the nonlocal condition for wu,

Let us now consider Problem 2. We are interested in finding the sufficient conditions
for the existence and uniqueness of a solution to Problem 2. By a solution of Problem
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2 we mean the pair {ui,us} of the class Vi = {{u1,ua}|ux € L>®(0,T;L*(Q)) N
L2(0, T; W3 (), uge € L2(0,T; W5 H(2)), k = 1,2} which satisfies (1.10)—(1.12).

We suppose that the operators M, L and B satisfy the following conditions instead
of I and II.

I1I. The coefficients m;;(x),l;j(x),bij(x) € WL(Q), 4,7 = 1,2,--- ,n; m,Lb €
(L>(2)™, m,1,b e L>®(Q).

IV. The operators M, L and B are of elliptic type, that is, M and L obey (1.4),

(1.5) and there exist positive constants kg, Kp, such that for any v €W} (Q)
Esllvl < (Bu,o), < Kgllul? (3.1)

Theorem 3.1. Let the assumptions III, IV be fulfilled and 02 € C?. Let also
iii) f1€ L2(0,T: Wy (@), p € LA(Q), ¢ € WR(Q), B € L=(0.T:W,'*(00), Bu €
LA(Qr), f2 € LX(Qr), B2 € L(0,T; Wy (002));
w) a(z,p) is continuous in Q x (—oo, +00) and |a(x,v)|| < +oo for all v € W3 ().

Then Problem 2 has a unique generalized solution {ui,us} € V1.

Proof. We prove the theorem in two steps again. In the first step we find uo as
a solution of a problem for the equation (1.11) with the boundary data (1.9) and an
integral condition with respect to ¢ and establish the uniqueness of u;. The second step
consists of proving the existence and uniqueness of u; as the solution of the problem
for (1.10) with the boundary data (1.9) and the first condition of (1.12) provided that
ugy is known.

Step 1. Let us integrate (1.10) with respect to t from 0 to T and operate the result
with the operator B~! which exists by the assumption II'. This gives

/OT updt = B! (M(x) + Mo(z) - /OT fi (t,x)dt) ) (3.2)

By Theorem 1.2, the problem (1.11),(1.9),(3.2) has a unique solution up € Y and
ug € L2(0,T; Wy H(Q)).

Step 2. We now consider the problem for (1.10) with the boundary data (1.9) and
the first condition of (1.12). The right term Bus + f1 of (1.10) is known and belongs
to L2(),T; W5 1(Q)). By Theorem 1.1, this problem has a unique solution u; € Y and
uy € L2(0,T; Wy H(Q)).

Thus the solution {uy, us} of Problem 2 exists and is unique in the class V. Theorem
is proved.
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