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The initial boundary value problems for systems of two parabolic equations are
studied when the conditions with respect to the time variable are given only for one of
the unknown functions. The problems are considered in the case where along with the
initial data for one of the functions either the value of the same function is given at
the �nal moment of time or the integral of this function with respect to time is known.
The existence and uniqueness of the solution to these problems are established.

1. The preliminaries

Let Ω be a domain in R
n with a smooth boundary ∂Ω, Ω is the closure of Ω, T is an

arbitrary positive real number, QT = (0, T )×Ω and ST = (0, T )×∂Ω. Throughout this
paper we use the notation: ‖ · ‖R and (·, ·)R are the norm and the inner product of Rn,
respectively; ‖ · ‖ and (·, ·) are the norm and the inner product of L2(Ω), respectively;

‖ · ‖j and
〈
·, ·
〉
j
are the norm of W j

2 (Ω) and the duality relation between
◦
W j

2 (Ω) and

W−j2 (Ω), respectively; as usual W 0
2 (Ω) = L2(Ω). We also denote by Hq(Ω) the H�older

space of functions dependent on the variables x ∈ Ω, q > 0.
Let M,L,B : W 1

2 (Ω)→ (W 1
2 (Ω))∗ are linear di�erential operators of the form

M = −div(M(x)∇) + (m,∇)R +m(x)I, (1.1)

L = −div(L(x)∇) + (l,∇)R + l(x)I, (1.2)

B = −div(B(x)∇) + (b,∇)R + b(x)I, (1.3)

respectively, whereM(x) ≡ (mij(x)), L(x) ≡ (lij(x)) and B(x) ≡ (bij(x)) are matrices
of functions, i, j = 1, 2, . . . , n; m, l and b are vector functions; m, l, b are scalar
functions; I is the identical operator.

We assume that the following conditions are ful�lled.
I. mij(x) ∈ Hr+1(Ω)∩W 3

∞(Ω), lij(x), bij(x) ∈W 1
∞(Ω), i, j = 1, 2, · · · , n, 0 < r < 1;

m ∈ (Hr(Ω) ∩ W 2
∞(Ω)))n, m(x) ∈ Hr(Ω) ∩ W 2

∞(Ω); l,b ∈ (L∞(Ω))n, l(x), b(x) ∈
L∞(Ω).

II. M and L are operators of elliptic type, that is, there exist positive constants mk

and lk, k = 1, 2, such that for any v ∈
◦
W 1

2 (Ω)

m1‖v‖21 ≤
〈
Mv, v

〉
1
≤ m2‖v‖21, (1.4)

l1‖v‖21 ≤
〈
Lv, v

〉
1
≤ l2‖v‖21. (1.5)

In this paper we are studying the following problems.
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Problem 1. For given functions gk(x), fk(t, x), βk(t, x), k = 1, 2, σ(x, p), u0(x) and
uT (x) �nd the pair of functions {u1(t, x), u2(t, x)} satisfying the system of equations

u1t +Mu1 = g1(x)U1 + g2(x)U2 + f1(t, x), (1.6)

u2t + Lu2 = Bu1 + σ(x, u1) + f2(t, x), (t, x) ∈ QT , (1.7)

and the conditions

u1|t=0 = u0(x), u1|t=T = uT (x), x ∈ Ω, (1.8)

ui|ST
= βi(t, x). (1.9)

Here Ui(x) ≡
∫ T

0 uidt, i = 1, 2.
Problem 2. For given functions fi(t, x), βi(t, x), i = 1, 2, µ(x) and ϕ(x) �nd the pair

of functions {u1(t, x), u2(t, x)} satisfying the system of equations

u1t +Mu1 = Bu2 + f1(t, x), (1.10)

u2t + Lu2 = f2(t, x), (t, x) ∈ QT , (1.11)

the conditions

u1|t=T − u1|t=0 = µ(x), U1(x) = ϕ(x), x ∈ Ω. (1.12)

and the boundary data (1.9).
In addition to Problems 1 and 2 we consider two auxiliary problems for the linear

parabolic equation
ut + Lu = F (t, x) (1.13)

with the operator L of the form (1.2), the boundary condition

u|ST
= β(t, x). (1.14)

and initial data
u|t=T − u|t=0 = µ(x), x ∈ Ω, (1.15)

or ∫ T

0
u(t)dt = ϕ(x), x ∈ Ω. (1.16)

The existence and uniqueness of the solution to the problems (1.13)�(1.15) and (1.13),
(1.14), (1.16) is guaranteed by the following theorems.

Theorem 1.1. Let the assumptions I, II of the operator L be ful�lled. Let µ ∈ L2(Ω),

F ∈ L2(0, T ;W−1
2 (Ω)), β ∈ L∞(0, T ;W

1/2
2 (∂Ω)), βt ∈ L2(ST ). Then the problem (1.13)

�(1.15) has a unique weak solution u in the class Y ≡ L2(0, T ;W 1
2 (Ω))∩L∞(0, T ;L2(Ω))

and the solution depends continuously on F , µ and β, i.e.,

‖u‖Y ≤ C
{
‖µ‖+ ‖β‖

L∞(0,T ;W
1/2
2 (∂Ω))

+ ‖βt‖L2(ST ) + ‖F‖L2(0,T ;W−1
2 (Ω))

}
where the positive constant C depends on n, T , l1, l2 and mesΩ.

Theorem 1.2. Let the assumptions I, II of the operator L be ful�lled and ∂Ω ∈ C2.

Let F ∈ L2(QT ), ϕ ∈W 2
2 (Ω), β ∈ L∞(0, T ;W

3/2
2 (∂Ω)), βt ∈ L2(ST ). Then the problem

(1.13)�(1.14),(1.16) has a unique weak solution u in the class Y and the solution

depends continuously on F , µ and β, i.e.

‖u‖Y ≤ C̃
{
‖Lϕ‖+ ‖β‖

L∞(0,T ;W
1/2
2 (∂Ω))

+ ‖βt‖L2(ST ) + ‖F‖L2(QT )

}
where the positive constant C̃ depends on n, T , l1, l2 and mesΩ.
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Theorems 1.1 and Theorem 1.2 are reduced to the special cases of Theorems 3 and
7 of [2], respectively, by substitution of the function u with a function w + ρ in
(1.13),(1.14),(1.16) where w is a new unknown function, Mρ = 0 and ρ|ST

= β.

2. The problem with the initial and �nal conditions for u1

In this section we are interested in �nding the su�cient conditions for the existence
and uniqueness of a solution to Problem 1. By a solution of Problem 1 we mean the
pair {u1, u2} of the class V = {{u1, u2}|u1 ∈ C([0, T ];W 4

2 (Ω)), u1t ∈ L2(0, T ;W 4
2 (Ω)),

u2 ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;W 1
2 (Ω)), u2t ∈ L2(0, T ;W−1

2 (Ω))} which satis�es (1.6)�
(1.9).

Theorem 2.1. Let the assumptions I, II be ful�lled and ∂Ω ∈ C4. Let also

i) f1 ∈ Cr([0, T ];W 2
2 (Ω) ∩ Hr(Ω)), f1t ∈ C([0, T ];W 2

2 (Ω)), f1tt ∈ L2(QT ), β1 ∈
C(0, T ;Hr+2(∂Ω) ∩W 7/2

2 (∂Ω)), β1t ∈ Cr([0, T ];Hr(∂Ω)) ∩ L2(0, T ;W
7/2
2 (∂Ω)),

β1tt ∈ L2(0, T ;W
3/2
2 (∂Ω)), u0, uT ∈ Hr+2(Ω) ∩W 5

2 (Ω), 0 < r < 1, f2 ∈ L2(QT ),

β2 ∈ L2(0, T ;W
3/2
2 (∂Ω));

ii) gk(x), k = 1, 2, are twice continuously di�erentiable in Ω, there exists a constant

ν > 0 such that |g2(x)| ≥ ν for all (x, p) ∈ Ω× (−∞,+∞); a(x, p) is continuous

in Ω× (−∞,+∞) and ‖a(x, v)‖ < +∞ for all v ∈W 4
2 (Ω).

Then Problem 1 has a unique solution {u1, u2} ∈ V and u1tt ∈ L2(0, T ;W 2
2 (Ω)).

Proof. We prove the theorem in two steps. In the �rst step we establish the existence
and uniqueness of the solution to the problem (1.6),(1.8),(1.9) as an inverse problem
of recovering an unknown source function U2. The second step consists of �nding u2

as the solution of the problem for (1.7) with the boundary data (1.9) and proving the
uniqueness of u2 provided that u1 and U2 are known.

Step 1. Let us consider the problem (1.6),(1.8),(1.9). We integrate (1.6) with respect
to t on [0, T ] and divide the result by T . In view of (1.8) this yields

δu1 +Mū1 = g1(x)U1 + g2(x)U2 + f̄1 (2.1)

where δu1 = T−1(uT (x)−u0(x)) and v̄ = T−1
∫ T

0 v dt for every v ∈ L1(0, T ). Subtracting
(2.1) from (1.6) we obtain

ū1t +Mū1 = f1 − f̄1 + δu1.

Introducing the function h as a solution of the problem Mh = 0, h|∂Ω = β1 and
rewriting the last equality in terms of a new function w = u1 − ū1 − h + h̄ we are led
to the equation

wt +Mw = f1 − f̄1 + δu1 − ht ≡ F1(t, x). (2.2)

From (1.8) and (1.9)

w|t=T − w|t=0 = Tδu1 − h(T, x) + h(0, x) ≡ wT (x). (2.3)

w|∂Ω = 0. (2.4)

By Theorem 1.1, the problem (2.2)�(2.4) has a unique generalized solution w ∈ Y and

‖w‖Y ≤ C
{
‖δu1‖+ ‖F1‖L2(0,T ;W−1

2 (Ω))

}
.
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Let us prove that in the hypotheses of the theorem w ∈ C(0, T ;W 4
2 (Ω)). To do this

we consider the iterative scheme

wst +Mws = F1(t, x) (2.5)

ws|t=0 = ws−1|t=T − δu1. (2.6)

ws|∂Ω = 0, s = 1, 2, ...; w0 = 0. (2.7)

By [1, p. 364] the solution ws ∈ Cr([0, T ];Hr+2(Ω)) and wst ∈ Cr([0, T ];Hr(Ω)).
Subtracting (2.5) for ws from the same equation for ws+1 gives

ws+1
t − wst +Mws+1 −Mws = 0. (2.8)

We multiply (2.8) byM(ws+1−ws) in terms of the inner product of L2(Ω) and integrate
by parts in the �rst term of the resulting equation. This yields

1

2

d

dt

〈
ws+1 − ws,M(ws+1 − ws)

〉
1

+ ‖M(ws+1 − ws)‖2 = 0.

Multiplying this equation by eαt where α > 0 we obtain

1

2

d

dt

[
eαt
〈
ws+1 − ws,M(ws+1 − ws)

〉
1

]
eαt‖M(ws+1 − ws)‖2−

+αeαt
〈
ws+1 − ws,M(ws+1 − ws)

〉
1

= 0. (2.9)

In view of the ellipticity of the operator M there exists a constant m3 > 0 such that
for any v ∈W 2

2 (Ω), v|∂Ω = 0
‖Mv‖ ≥ m3‖v‖2. (2.10)

Hence

‖M(ws+1−ws)‖2−
〈
ws+1−ws,M(ws+1−ws)

〉
1
≥ (m2

3−αm2)‖ws+1−ws‖22. (2.11)

Choosing α < m2
2/m1 and integrating (2.9) with respect to t from 0 to τ , 0 < τ ≤ T ,

we get

1

2

〈
ws+1 − ws,M(ws+1 − ws)

〉
1

+ (m2
3 − αm2)

∫ τ

0
‖ws+1 − ws‖22 e−α(τ−t) dt

≤ 1

2
e−ατ

〈
ws − ws−1,M(ws − ws−1)

〉
1

∣∣
t=T

(2.12)

by (2.10). From (2.11) and (2.12) it follows that〈
ws+1 − ws,M(ws+1 − ws)

〉
1

∣∣
τ=T
≤ e−αT

〈
ws − ws−1,M(ws − ws−1)

〉
1

∣∣
t=T

≤ e−αT (s−1)
〈
w1,Mw1

〉
1

∣∣
t=T
≤ e−αTs

〈
wT ,MwT

〉
1

(2.13)

and ∫ T

0
‖ws+1 − ws‖22 dt ≤ (m2

3 − αm2)−1e−αT (s−1)
〈
wT ,MwT

〉
1
. (2.14)

for every s = 1, 2, .... Equation (2.8) and the last inequality enable to obtain the estimate
for ws+1

t − wst . Namely,∫ T

0
‖ws+1

t − wst ‖2 dt ≤ m4(m2
3 − αm2)−1e−αT (s−1)

〈
wT ,MwT

〉
1
. (2.15)
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Here the positive constant m4 depends on maxx∈Ω{|mij(x)|, |m(x)|, |m(x)|}.
Under the hypotheses of the theorem wst + Mws ∈ W 2

2 (Ω) ∩ Hr(Ω) for every t ∈
[0, T ], (wst +Mws)t ∈ L2(0, T ;W 2

2 (Ω)) and ws(0, x), ws(T, x) ∈ W 2
2 (Ω). Moreover, the

equation (2.5) is valid for all (t, x) ∈ QT . Acting on (2.5) and (2.6) with the operator
M we obtain the following equalities for function W s = Mws − F1(t, x):

W s
t +MW s = F1t, (2.16)

W s|t=0 = W s−1|t=T −MwT + TδF1 (2.17)

where δF1 = T−1(F1(T, x)− F1(0, x)). From (2.5), (2.7) we have

W s|∂Ω = 0. (2.18)

The problem (2.16)�(2.18) has a unique solution W s ∈ L2(0, T ;W 2
2 (Ω)). Repeating the

arguments led to (2.14) and (2.15) one can obtain estimates for W s. Namely,∫ T

0
‖W s+1 −W s‖22 dt ≤ (m2

3 − αm2)−1e−αT (s−1)
〈
MwT − TδF1,M(MwT − TδF1)

〉
1
,

(2.19)∫ T

0
‖W s+1

t −W s
t ‖2 dt ≤ m4(m2

3−αm2)−1e−αT (s−1)
〈
MwT −TδF1,M(MwT −TδF1)

〉
1

(2.20)
for every s = 1, 2, ....

Furthermore, di�erentiation (2.16) with respect to t gives

W s
tt +MW s

t = F1tt. (2.21)

By (2.16),
W s
t |t=0 = W s−1

t |t=T +W0(x) (2.22)

where W0(x) ≡M2wT − Tδ(F1t +MF1). From (2.18) we have

W s
t |∂Ω = 0. (2.23)

Repeating the arguments led to (2.19) and (2.20) we obtain the estimates∫ T

0
‖W s+1

t −W s
t ‖22 dt ≤ (m2

3 − αm2)−1e−αT (s−1)
〈
W0,MW0

〉
1
, (2.24)

∫ T

0
‖W s+1

tt −W s
tt‖2 dt ≤ m4(m2

3 − αm2)−1e−αT (s−1)
〈
W0,MW0

〉
1

(2.25)

for every s = 1, 2, ....
The inequalities (2.14), (2.15), (2.19), (2.20), (2.24), (2.25) implies that the sequence

ws has a limit w ∈ L2(0, T ;W 4
2 (Ω)) and wst → wt in L2(0, T ;W 4

2 (Ω)) as s → +∞.
Then ws → w in C([0, T ];W 4

2 (Ω)) as s→ +∞ which implies that there exist the traces
ws(0, x), ws(T, x) ∈ W 2

2 (Ω) and ws(0, x) → w(0, x), ws(T, x) → w(T, x) in W 4
2 (Ω) as

s→ +∞. Passing to the limit in (2.5)�(2.6) we conclude that w satis�es equation (2.2)
for almost all (t, x) ∈ QT , the data (2.3) for almost all x ∈ Ω. By (2.7), the boundary
condition (2.4) also asserts for w.

Step 2. Let us come back to the problem (1.7)�(1.12). Using the de�nition of w and
(1.2)�(1.4) we can now �nd u1

u1 = w + u0 − w(0, x)− h+ h(0, x) (2.26)
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and express U2 from (2.1) in terms of u1 as

U2 ≡
∫ T

0
u2 dt =

[
δu1 +Mu1 − g1(x)U1 − f1

]
(g2(x))−1 ≡ ψ(x). (2.27)

Thus, we obtain the problem for equation (1.8) on u2 with the conditions (1.12) and
(2.27). By the smoothness of w and (2.26), u1 ∈ C([0, T ];W 4

2 (Ω)), ψ(x) ∈ W 2
2 (Ω).

According Theorem 1.2 the problem (1.8), (1.12), (2.27) has a unique solution u2 ∈
L∞(0, T ;L2(Ω))∩L2(0, T ;W 1

2 (Ω)) and u2t ∈ L2(0, T ;W−1
2 (Ω)). The theorem is proved.

Let us consider Problem 1 with the equation

u1t +Mu1 = g1(x)U1 +AU2 + f1(t, x) (2.28)

instead of (1.6) where A is an operator of the form

A = −div(A(x)∇) + (a,∇)R + a(x)I (2.29)

where A(x) ≡ (aij(x)) is a matrix of functions, i, j = 1, 2, . . . , n; a = a(x) is a vector
function; a(x) is a scalar function. If there exist positive constants αk, k = 1, 2, such

that for any v ∈
◦
W 1

2 (Ω)

α1‖v‖21 ≤
〈
Av, v

〉
1
≤ α2‖v‖21, (2.30)

then the operator A is invertible and Theorem 2.1 remains true for the problem (1.7)�
(1.9),(2.28).

Theorem 2.2. Let the assumptions of Theorem 2.1 be ful�lled. Let aij(x) ∈ W 1
∞(Ω),

i, j = 1, 2, · · · , n, a ∈ (L∞(Ω))n, a ∈ L∞(Ω) and (2.30) holds. Then the problem

(1.7)�(1.9),(2.28) has a unique solution {u1, u2} ∈ V and u1tt ∈ L2(0, T ;W 2
2 (Ω)).

Proof. Let us consider the problem (1.8),(1.9),(2.28). We integrate (2.28) with
respect to t on [0, T ] and divide the result by T again. In view of (1.8) this yields

δu1 +Mū1 = g1(x)U1 + g2(x)AU2 + f̄1. (2.31)

Subtracting (2.31) from (2.28) and rewriting the last equality in terms of the function w
we come to the problem (2.2)�(2.4). As was proved, this problem has a unique solution
w ∈ C([0, T ];W 4

2 (Ω)), wt ∈ L2([0, T ];W 4
2 (Ω)) and wtt ∈ L2(QT ). Using the de�nition

of w we �nd u1 and express U2 from (2.31) in terms of u1 as

U2 = q(x) +A−1ψ(x) (2.32)

where q satis�es the equation Aq = 0 and q|∂Ω =
∫ T

0 β2dt. Thus, we obtain the problem
for equation (1.8) on u2 with the conditions (1.12) and (2.32). In the hypotheses of
the corollary q ∈ W 2

2 (Ω), u1 ∈ C([0, T ];W 4
2 (Ω))and ψ(x) ∈ W 2

2 (Ω). Hence q(x) +
A−1ψ(x) ∈ W 2

2 (Ω). According to Theorem 1.2 the problem (1.8), (1.12), (2.27) has a
unique solution u2 ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1

2 (Ω)) and u2t ∈ L2(0, T ;W−1
2 (Ω)),

which completes the proof.

3. The problem with the nonlocal condition for u1

Let us now consider Problem 2. We are interested in �nding the su�cient conditions
for the existence and uniqueness of a solution to Problem 2. By a solution of Problem
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2 we mean the pair {u1, u2} of the class V1 = {{u1, u2}|uk ∈ L∞(0, T ;L2(Ω)) ∩
L2(0, T ;W 1

2 (Ω)), ukt ∈ L2(0, T ;W−1
2 (Ω)), k = 1, 2} which satis�es (1.10)�(1.12).

We suppose that the operators M , L and B satisfy the following conditions instead
of I and II.

III. The coe�cients mij(x), lij(x), bij(x) ∈ W 1
∞(Ω), i, j = 1, 2, · · · , n; m, l,b ∈

(L∞(Ω))n, m, l, b ∈ L∞(Ω).
IV. The operators M , L and B are of elliptic type, that is, M and L obey (1.4),

(1.5) and there exist positive constants kB, KB, such that for any v ∈
◦
W 1

2 (Ω)

kB‖v‖21 ≤
〈
Bv, v

〉
1
≤ KB‖v‖21. (3.1)

Theorem 3.1. Let the assumptions III, IV be ful�lled and ∂Ω ∈ C2. Let also

iii) f1 ∈ L2(0, T ;W−1
2 (Ω), µ ∈ L2(Ω), ϕ ∈ W 2

2 (Ω), β1 ∈ L∞(0, T ;W
1/2
2 (∂Ω)), β1t ∈

L2(QT ), f2 ∈ L2(QT ), β2 ∈ L∞(0, T ;W
1/2
2 (∂Ω));

iv) a(x, p) is continuous in Ω× (−∞,+∞) and ‖a(x, v)‖ < +∞ for all v ∈W 1
2 (Ω).

Then Problem 2 has a unique generalized solution {u1, u2} ∈ V1.

Proof. We prove the theorem in two steps again. In the �rst step we �nd u2 as
a solution of a problem for the equation (1.11) with the boundary data (1.9) and an
integral condition with respect to t and establish the uniqueness of u1. The second step
consists of proving the existence and uniqueness of u1 as the solution of the problem
for (1.10) with the boundary data (1.9) and the �rst condition of (1.12) provided that
u2 is known.

Step 1. Let us integrate (1.10) with respect to t from 0 to T and operate the result
with the operator B−1 which exists by the assumption II′. This gives∫ T

0
u2dt = B−1

(
µ(x) +Mϕ(x)−

∫ T

0
f1(t, x)dt

)
. (3.2)

By Theorem 1.2, the problem (1.11),(1.9),(3.2) has a unique solution u2 ∈ Y and
u2t ∈ L2(0, T ;W−1

2 (Ω)).
Step 2. We now consider the problem for (1.10) with the boundary data (1.9) and

the �rst condition of (1.12). The right term Bu2 + f1 of (1.10) is known and belongs
to L2(), T ;W−1

2 (Ω)). By Theorem 1.1, this problem has a unique solution u1 ∈ Y and
u1t ∈ L2(0, T ;W−1

2 (Ω)).
Thus the solution {u1, u2} of Problem 2 exists and is unique in the class V1. Theorem

is proved.
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