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Abstract. We introduce a notion of weighted projective planes which is a generalization of  usual projective planes. We prove that a Frobenius group G of order 16 operates on a projective plane P of order 7 as a colineation group. Using this operation the plane P may be constructed. A weighted projective plane P’ of order 7 is equivalent to a totally symmetric (2, 7 – 1)-quasigroup. 
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1. INTRODUCTION

An incidence structure is a triple D = (V, B, I), where V and B are disjoint sets and I (   V ( B. The elements of V are called points, and the elements of B are called blocks. If A is a point of V, the set of all blocks incident with A is denoted by (A). Thus

(A) = {b: b (  B, A I b}.

Moreover, for A1, A2, …, An, the set of all the blocks incident with all the points A  is denoted by (A1, A2, …, An). Thus

(A1, A2, …, An) = {b: b ( B, Ai I b for all i ( Nn},

where N is the set of all positive integers and Nn = {1, 2, …, n}. Dually, for b, b1, b2, …, bn(  B,
(b) = {A: A (  V, A I b},
(b1, b2, …, bn) = {A: A ( V, A I b for all i ( Nn}.


We consider only the incidence structures where distinct blocks have distinct sets of points. We identify each block b with the set (b) and identify the incidence relation with the membership relation (.

2. SOME DEFINITION AND RESULTS



Definition 1. A incidence structure P = (V, B, I) is called projective plane if and only if it satisfies the following axioms:


(P. 1) Any two distinct points are joined by exactly one line.


(P. 2) Any distinct lines intersect in a unique point.


(P. 3) There exists a quadrangle, i.e. 4 points no three of which are on a common line.


The following theorem is proved in [1].


Theorem 1. Let P = (V, B, I) be a finite projective planes. Then there exists a natural number n, called the order of  P, satisfying:


a)  ((A)( = ((g)( = n +1           for all A ( V and g ( B;

b) (V(  =  (B( = n2 + n + 1.

The finite projective plane of order n will be denoted by S(2, n + 1, n2 + n +1).

The following definition generalizes the notion of finite projective planes of order n.

Definition 2. A finite incidence structure P = (V, B, I) is called  weighted projective plane with parameters n2 + n + 1, n +1, 1 ( N, if  for any b(B there is  a mapping f b : (b) ( N, if and only if it satisfies the following axioms:


(WD. 1)   (V ( = n2  + n + 1;


(WD. 2)   ((A, B)( =  1, for any two distinct points A, B(V;


(WD. 3)   kb = n + 1, for any block b(B, where:

a) the image fb(A) is denoted by tAb, and is called the weight of the point A in the block b,

b) for A(V, its weight is tA = (A(bi tAbi, and

c) for b(B, the number kb = (Ai(b tAib is called the size of  the block b.

Definition 3. A  weighted projective plane S’ = (V’, B, () is an extension of a   weighted projective plane S = (V, B, (), if V ( V’ and for each b ( B there is b’ ( B’ such that (b) ( (b’), and for each A ( (b), tAb’ = tAb. 
Definition 4. An extension (V’, B’, () of a  weighted projective plane with parameters n2 + n + 1, n + 1, 1 defined by

a) V’ = V;

b) B’ = B ( B” where B” = {{An+1}: A ( V}, and

c) For each A ( V, tA = r + n + 1, where r is the number of block in B containing A,

is called a complete weightid projective plane with parameters n2 + n + 1, n + 1, 1, and is denoted by S’(2, n + 1, n2 + n + 1).


Next we compare  complete weighted projective plane S’(2, n + 1, n2 + n + 1) with the notion of totally symmetric (2, n – 1)-quasigroup given below.

Definition 5. Let Q be nonempty set, n and m positive integers,and

f : (x1, x2, …, xn) ( f(x1, x2, …, xn)

a mapping from Qn into Qm. Then we say that Q(f) is an (n, m)-groupoid.


A (n, m)-groupoid Q(f) is said to be a (n, m)-quasigroup if and only if the following statement is satisfied:


(A). For each “vector” (a1, a2, …, an) ( Qn and each injection ( from Nn = {1, 2, …, n} into Nn+m there exists unique “vector” (b1, b2, …, bn+m)  Qn+m such that b((1) = a1, …, b((n) = an and 

f(b1, b2, …, bn) = (bn+1, bn+2, …, bn+m).

In the paper [3] an (n, m)-quasigroup is interpreted as a (n, m)-quasigroup relation.

Definition 6. 
A (n + m)-ary relation ( ( Qn+m is called (n, m)-quasigroup relation if and only if the following statement is satisfied:


(A). For each “vector” (a1, a2, …, an) ( Qn and each injection ( from Nn = {1, 2, …, n} into Nn+m there exists unique “vector” (b1, b2, …, bn+m) ( Qn+m such that b((1) = a1, …, b((n) = an and 

(b1, b2, …, bn+m) ((.


The following theorem is proved in [3].


Theorem 2. A (n, m)- groupoid (Q, f) is a (n, m)-quasigroup if and only if the (n + m)-ary relation ( ( Qn+m defined by

(x1, x2, …, xn+1)(( ( f(x1, x2, …, xn) = (xn+1, xn+2, …, xn+m)

is an (n, m)-quasigroup relation.


Definition 7. A (n, m)-quasigroup is called totally symmetric, if and only if   
[image: image1.wmf]
f(x1, x2, …, xn) = (xn+1, xn+2, …, xn+m) ( f(y1, y2, …, yn) = (yn+1, yn+2, …, yn+m).

for any (x1, x2, …, xn+m) ( Qn+m and any permutation (y1, y2, …, yn+m) of (x1, x2, …, xm). The (n + m)-ary relation ( ( Qn+m in this case is called totally symmetric.



The following theorem is proved in [7].

Theorem 3. Every  complete weighted projective plane S’(2, n + 1, n2 + n + 1) defines a totally symmetric (2, n – 1)-quasigroup relation ( ( Vn+1, where

(A1, A2, …, An+1) ( ( ( {A1, A2, …, An+1} ( B.


Conversely, any totally symmetric (2, n – 1)-quasigroup relation ( ( Vn+1 satisfying (A, A, …, A) = (An+1) ( ( for any A ( V, defines a complete weighted projective plane S’(2, k, n2 + n + 1), where

{A1, A2, …, An+1} ( B ( (A1, A2, …, An+1) ( (.

3. A CONSTRUCTION WEIGHTED PROJECTIVE PLANE OF ORDER 7 
Theorem 4. A Frobenius group G of order 16 acts on a projective plane P of order 7 as a colineation group. Using this act the plane P may be constructed.

Proof. Let
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be a Frobenius group of order 16 which acts on a projective plane P of order 7 as a colineation group. The plane P has 72 + 7 + 1 = 57 points and same lines. From 57 = 8 ( 7 + 1 and colineation 
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 acts semiregular on a nonfixed points follows that 
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 has 7 orbits of length 8 and one orbit of length 1. We may set that
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 = (
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)(10, 11, 12, . . . 17 )(20, 21, 22, . . . 27 )(30, 31, 32, . . . 37) . . .  (70, 71, 72, . . .  77)

where 10, 11, 12, .  .  . 17, 20, 21, 22, . . .  27, 30, 31, 32, . . . 37, . . . 70, 71, 72, . . . 77 are all points of plane P.

From theorem of orbite follows that 
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 has same orbit structure of lines. We may set that
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Where
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are all lines of plane P.

 Let 
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 be unique line fixed by 
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. We may set that
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l

 = {10, 11, 12, . . . , 17}.

Let 
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 is a line through 
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. It is easy to see that 
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 occurs at one point from each orbits of points. Without a loss of generality, we may set that
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 = {
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,10, 20, . . .  , 70}.
Other 7 lines of orbit of lines 
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 obtained by acting of 
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 on a line 
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. The lines  
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 through 10. Other 6 lines 
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 through 10 lie in 6  remaining different  
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- orbits of lines in P. If constracted these lines then the remaining lines of planes P are obtained by acting  of 
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 on lines 
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, i = 2, 3, 4, 5, 6, 7,  k = 0, 1, 2, 3, 4, 5, 6, 7.
follows
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i
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{10, 1’1, 2’2, 3’3, . . . , 7’7} 

where 1’, 2’, 3’, 4’, 5’, 6’, 7’  are (unneccessary different) numbers from the set {2, 3, . . . , 7}.

We consider acting the involution 
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 on a set points and set lines of plane P. The order of involution 
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 is even follows involution 
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 is elation. From 
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 follows that the point 10 is a center and the line 
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 is axis of involution 
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. Hence, involution 
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 fixes 8 lines  
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and 8 points 
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, 10, 20, 30, . . . , 70. From 57 = 2 ( 25 + 7 follows 
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 has 7 orbits of length 1 (7 fixed points) and 25 orbits of length 2. If we write
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 in a short way (writing only indices 0, 1, 2, 3, 4, 5, 6, 7) we may set that
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 = (0)(1)(2, 7)(3, 6)(4, 5)
where (2, 7) denoted that 2
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 = 7 from the same orbit of points, (3, 6) denoted 3
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 = 6 from the same orbit of points, (4, 5) denoted that 4
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 = 5 from the same orbit of points.  From statement
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  i = 2, 3, 4, 5, 6, 7.
follows that 
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  i = 2, 3, 4, 5, 6, 7 are of type
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Where  
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 are pairwise different numbers from the set {2, 3, 4, 5, 6, 7}. We may set that
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{10, 21, 32, 37, 43, 46, 54, 56}.

Now we constructed lines 
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i
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  i = 3, 4, 5, 6, 7  which are of type
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From statement
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,  i = 3, 4, 5, 6, 7,  k = 0, 1, 2, 3, 4, 5, 6, 7
follows that only two from numbers 
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 are from the set {2, 3, 4} and other two  are from the set {5, 6, 7}. From statement
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j, i, j = 3, 4, 5, 6, 7,  k, s = 0, 1, 2, 3, 4, 5, 6, 7
follows that the lines 
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j,  have  exactly two common pair of numbers 
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, i = 3, 4, 5, 6, 7 we obtain following unique solution for the lines:
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{10, 31, 32, 37, 53, 56, 64, 65}
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{10, 41, 42, 47, 63, 66, 74, 75}
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{10, 51, 52, 57, 73, 76, 24, 25}  
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{10, 61, 62, 67, 23, 26, 34, 35}
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{10, 71, 72, 77, 43, 46, 54, 55}  
The Theorem is proved.
Let P = (V, B, 
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) be projective plane of order 7 constructed in the theorem. The weighted projective plane P’ = (V’, B’, 
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), where V = V’, B’ = B 
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B’’ where B’’ = {{A8}: A 
[image: image69.wmf]Î

V} is a complete weighted projective plane of order 7. The relation 
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V7+1 defined by 

(A1, A2, A3, A5, A6, A7, A7+1)
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 {A1, A2, A3, A4, A5, A6, A7, A7+1} 
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B or 

A1 = A2 = A3 . . . = A7 = A7+1,

is a totally symmetric (2, 7 – 1)-quasigroup relation satisfying the condition (A, A, A, A, A, A, A, A) = (A7+1)
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 EMBED Equation.3 [image: image74.wmf]t

 for all A
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V. The number of point is |V| = 72 + 7 + 1 = 57, the number of blocks is |B’| = 72 + 7 + 1 + 57 = 114 and tA = 8 + 8 = 16.

4. CONCLUSION

This paper presents the results obtained by acting a colineation group on a set points and set lines of plane P which exists. Similar acting of a colineation group on a set points and set lines of plane P whose question of existence is open, can be studied.
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