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We deal with two-dimensional continuity equation equipped with suitable known
coefficients, initial and boundary conditions. To solve this problem we describe integral
approach based on exact equality of two spatial integrals over domains located at the
neighboring temporal levels. The convergence order of investigated scheme depends on
accuracy of integral approximation. Presented scheme has convergence of first order.
Introduced approach allows to avoid Courant-Friedrichs-Lewy condition for time step.
Thus it’s more convenient for problems with huge velocity than traditional methods.
Theoretical investigations are confirmed by numerical experiments.

1. The problem statement and the main theorem
Consider the continuity equation

∂ρ

∂t
+
∂(uρ)

∂x
+
∂(vρ)

∂y
= 0 (1)

in the domain [0, T ] × D with D = [0, 1] × [0, 1]. Functions u(t, x, y), v(t, x, y) are known
in [0, T ] × D and smooth enough. We suppose for simplicity that ∀ t ∈ [0, T ] the following
conditions are satisfied:

u(t, x, y)
∣∣
y=0

= v(t, x, y)
∣∣
y=0

= 0, u(t, x, y)
∣∣
y=1

= v(t, x, y)
∣∣
y=1

= 0, (2)

and
u(t, x, y)

∣∣
x=1

≥ 0. (3)

For unknown function ρ(t, x, y) the following initial and boundary data are defined:

ρ(t, x, y)
∣∣
t=0

= ρinit(x, y) ρ(t, x, y)
∣∣
x=0

= ρleft(t, y) (4)

where ρinit, ρleft are known and smooth enough.
To introduce the numerical algorithm, firstly use two time layers tk−1, tk ∈ [0, T ] with time

step τ = tk− tk−1 > 0. There are many numerical methods for solving this problem (see [1-5]
and reference in them). But most of these methods have the tedious Courant-Friedrichs-Lewy
restriction for time step. We suggest approach without this restriction.
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At temporal level tk consider an arbitrary straight-edges quadrangle Ω with four nodes
(tk, xn, yn), n = 1, 2, 3, 4. For each quadrangle edge at segment t ∈ [tk−1, tk] we construct the
the "characteristic surface" Sn consisting of characteristics of equation (1) with beginning at
this edge. All four surfaces Sn cross the plane t = tk−1 and carve in it a curvilinear quadrangle

Рис. 1. Curvilinear quadrangle Q

Q with curved edges Cn (Fig. 1). If Ω is located near boundary of domain [0, T ]×D, surfaces
Sn can cross the boundary. In this case we get additional curved lines which produce a

Рис. 2. Boundary quadrangle R

curvilinear quadrangle R (Fig. 2). Generally speaking, we may get a triangular or pentagonal
domain R. Since it does not cause principal changes, we consider only the most common
situation with quadrangular domain.

For Ω, Q, and R the following statement is valid.
Theorem 1. For smooth solution of problem (1) – (4) we have the equality∫

Ω

ρ(tk, x, y) dx dy =

∫
Q

ρ(tk−1, x, y) dQ+ I(R) where

I(R) =


∫
R

ρ u dR, if R ̸= Ø at the plane x = 0,

0, if R = Ø.

2. Simple semi-discrete approximation
Now construct mesh Dh in plane Oxy. For simplification we use the uniform mesh Dh

with nodes (xi, yj) : xi = ih, yj = jh, i, j = 0, 1, 2, . . . , N , and meshsize h = 1/N . Then
we divide time segment [0, T ] by M+1 points tk = kτ, k = 0, 1, 2, . . . , M , with time step
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τ = T/M where M ≥ 1. Suppose that the (approximate) discrete solution ρh (tk−1, x, y) at
time level tk−1 is already known and we need to construct the approximate solution at time
level tk. For this purpose we need to take square Ωi,j with four nodes (xi ± h/2, yj ± h/2)
and apply the Theorem 1. Thus we get

xi+1/2∫
xi−1/2

yj+1/2∫
yj−1/2

ρ (tk, x, y) dy dx =

∫
Qk−1

i,j

ρ (tk−1, x, y) dQ+ I
(
Rk−1

i,j

)
where (5)

I
(
Rk−1

i,j

)
=


∫
Rk−1

i,j

ρ u dR, if Rk−1
i,j ̸= Ø at the plane x = 0,

0, if Rk−1
i,j = Ø.

(6)

To compute integrals in (5) we use bilinear interpolation [6] introduced by basic functions
ψp,q (x, y) = φp (x)φq (y) where

φp(x) =


(x− xp−1)/h, if x ∈ (xp−1, xp] ,
(xp+1 − x)/h, if x ∈ (xp, xp+1] ,

0 else.

Thus ∀ r = 0, ...,M in each square [xi, xi+1) × [yj, yj+1) we define interpolation of discrete
function ρh (t, x, y) by formula

ρhint (tr, x, y) =

j+1∑
q=j

i+1∑
p=i

ρh (tr, xp, yq)ψp,q (x, y) ∀ (x, y) ∈ [xi, xi+1)× [yj, yj+1).

To compute I
(
Rk−1

i,j

)
from (6) we also use the bilinear interpolation (ρu) ≈ (ρu)hint, where

(ρu)hint =

j+1∑
q=j

k∑
r=k−1

ρ (tr, 0, yq)u (tr, 0, yq)ψt,q (t, y) ∀ (t, y) ∈ [tk−1, tk]× [yj, yj+1).

So instead of exact equality (5) we get an approximate one with property

Рис. 3. Quadrangle approximation

xi+1/2∫
xi−1/2

yj+1/2∫
yj−1/2

ρhint (tk, x, y) dy dx ≈
∫
Qk−1

i,j

ρhint (tk−1, x, y) dQ+ Ih
(
Rk−1

i,j

)
. (7)
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Left-hand side of (7) can be computed exactly

xi+1/2∫
xi−1/2

yj+1/2∫
yj−1/2

ρhint (tk, x, y) dy dx = h2ρh (tk, xi, yj) . (8)

To compute right-hand side of (7) we need to construct some approximation for domains
Qk−1

i,j and Rk−1
i,j . Since both domains are quadrangles with curved sides, we demonstrate the

approximation only for Qk−1
i,j . Approximation of Rk−1

i,j we can get by the same way. For this
purpose consider four additional points (xi ± h/2, yj) and (xi, yj ± h/2) of square Ωi,j at
time level tk and denote each of eight nodes by An, n = 1, . . . , 8. From each An construct

Рис. 4. Nodes approximation

corresponding characteristics to time level tk−1 which produces a point Bn (Fig. 3). To
compute coordinates of point Bn approximately it’s enough to solve the following system of
ordinary differential equation:

dx̃n
dt

= u(t, x̃n, ỹn),

dỹn
dt

= v(t, x̃n, ỹn),

t ∈ [tk−1, tk],

with initial data
x̃n(tk) = xn, ỹn(tk) = yn

by the Runge-Kutta method [7]. Thus we compute the approximate coordinates Bh
n

(
x̃n(tk−1),

ỹn(tk−1)
)

of point Bn. All nodes Bh
n are producing the straight-edges polygon (octagon) P k−1

i,j

which approximates domain Qk−1
i,j (Fig. 3, 4). By the same way we can construct polygon

Lk−1
i,j which approximates quadrangle Rk−1

i,j . Thus with the help of (7), (8) to compute the
solution ρh (t, x, y) at time level tk we put

ρh (tk, xi, yj) =
1

h2

∫
Pk−1
i,j

ρhint (tk−1, x, y) dP +
1

h2
Ih

(
Lk−1

i,j

)
, where (9)

Ih
(
Lk−1

i,j

)
=


∫
Lk−1
i,j

(ρu)hint dL, if Lk−1
i,j ̸= Ø at the plane x = 0,

0, if Lk−1
i,j = Ø.

To evaluate convergence we use the discrete analogue of norm in space L1

(
[0, 1]× [0, 1]

)
:∥∥ρh∥∥

Lh
1
=

∑
0≤i,j≤N−1

∣∣ρh (xi, yj)∣∣h2.
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For numerical solution computed by (9) the following theorem is valid.
Theorem 2. For sufficiently smooth solution ρ(t, x, y) of problem (1) – (4) and discrete

solution ρh(t, x, y) computed by (9) we have the following estimate:∥∥ρ(tk, ·)− ρh(tk, ·)
∥∥
Lh
1
≤ ckh2 ∀ k = 0, 1, . . . ,M

with a constant c independent of k and h.
Corollary 1. If the conditions of Theorem 2 are satisfied, for tk = T we have:

∥∥ρ(T, ·)− ρh(T, ·)
∥∥
Lh
1
≤ c1T

h2

τ
.

Corollary 2. If in addition to Theorem 2 we put τ = c2 h, then∥∥ρ(T, ·)− ρh(T, ·)
∥∥
Lh
1
≤ c3Th.

Thus according to Corollary 2 we get the convergence of first order. Note that this approach
does not require the validity of Courant-Friedrichs-Lewy condition [1, 2] for time step τ .
Moreover, it is opposite in meaning: here the greater τ the better accuracy. Carried out
numerical experiments completely confirm the theoretical investigation.

3. Conclusions
Up to now the numerical modeling of real physical process with large velocity values

is quite difficult problem. One of its cause consists in necessity of too much time step for
numerical computations. Considered numerical algorithm for the continuity equation allows
to avoid Courant-Friedrichs-Lewy condition for time step. Thus we can provide numerical
modeling with greater time step and smaller computational time. The validity of considered
algorithm is confirmed by numerical experiment.
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