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In this paper a characterization of  finite cyclic L-groups is given, where L is a standard residuated lattice. That  characterization is useful to find a procedure for constructing all  finite cyclic L-groups with a given skeleton. As an example, for a given cyclic group G of order 8 [resp. 9] an algorithm for generating all L-groups with skeleton G will be described.

Introduction

Fuzzy approaches to various universal concept started with Rosenfeld’s paper [1]. Algebras with fuzzy equalities (or L-algebras, where L is a residuated lattice) have two parts: ordinary algebras (so called skeletons) and “relational part”, and they are structures for the equational fragment of fuzzy logic. A more general structure can be found in [2]. When L is the two-element Boolean algebra, then ordinary algebras can be interpreted as L-algebras, so such approach generalizes various results of universal algebras (for example, see [3], [4], [5]). Since the carrier set of an L-algebra is equipped with a fuzzy equality which is compatible with all of the fundamental operation of the ordinary part, the theory of algebras with fuzzy equalities deals with compatible fuzzy equalities. Some questions concerning fuzzy operations compatible with a fuzzy equivalence relation on groups in a different framework can be found in [6]. In that paper, among other things, were investigated so called T-vague groups of a group (T is a given t-norm). That other direction of studying compatible fuzzy equalities was developed in [7]. A general panorama of fuzzy equalities is presented in [8]. Our subject of study in this paper is finite cyclic groups with fuzzy equalities (or finite cyclic L-groups), and the main problem we are interested in is how to construct finite cyclic L-groups with the given skeleton. 

Preliminaries

In this paper, residuated lattices will be used, as structures of truth values. A residuated lattice is an algebra
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 is a lattice with the least element 0 and the greatest element 1, 
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 is called biresiduum. It is easy to see that each residuated lattice satisfies the following conditions: 
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Each of the following three pairs of adjoint operations makes a complete residuated lattice 
[image: image23.wmf]1

,

0

,

,

max,

min,

],

1

,

0

[

®

Ä

 (
[image: image24.wmf]]

1

,

0

[

 is the real unit interval): 


[image: image25.wmf]),

0

,

1

(

max

-

+

=

Ä

b

a

b

a

 
[image: image26.wmf])

1

,

1

(

min

b

a

b

a

+

-

=

®

 - standard Lukasiewicz structure; 


[image: image27.wmf],

b

a

b

a

×

=

Ä

 
[image: image28.wmf]1

=

®

b

a

 if 
[image: image29.wmf],

b

a

£

 
[image: image30.wmf]a

b

b

a

=

®

 otherwise – standard product structure; 
[image: image31.wmf]),

,

(

min

b

a

b

a

=

Ä

 
[image: image32.wmf]1

=

®

b

a

 if 
[image: image33.wmf],

b

a

£

 
[image: image34.wmf]b

b

a

=

®

 otherwise – standard Gödel structure. 

A binary fuzzy relation (or, L-relation) on X is any mapping 
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 A binary L-relation  E on X is a L-equivalence if E is reflexive: 
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 An L-equivalence is an L-equality if 
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An algebra with L-equality (shortly, L-algebra) of type F is a triplet 
[image: image48.wmf],

,

,

M

M

F

M

M

»

=

 where 
[image: image49.wmf]M

F

M

M

,

=

 is an ordinary algebra of type F and 
[image: image50.wmf]M

»

 is an L-equality on M such that each fundamental operation of 
[image: image51.wmf]M

 is compatible with 
[image: image52.wmf].

M

»

 The ordinary part M is called skeleton of 
[image: image53.wmf]M

. An L-algebra is said to be L-group (or, a group with fuzzy equalities) if its skeleton is an ordinary group. 

Finite  cyclic L-groups

In the sequel, 
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An L-group 
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Lemma 1. Let 
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The lemma above gives a characterization of all finite cyclic L-groups. Note that it is only a direct consequence of a general result concerning arbitrary finite L-groups, which was established in [9], where also  the notion of finite cyclic L-spectrum was introduced, by the following definition:
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Theorem 3. Let  
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Furthermore, there is an one-to-one correspondence between the set of all L-groups with skeleton 
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 and the set of all L-spectra of order n. 

The theorem above was previously established in [9]. A consequence of  that theorem is that a characterization of the set of all finite cyclic L-spectra of order n implies a  characterization of all L-groups with skeleton G, where G is a cyclic group of order n. 

A characterization of finite cyclic L-spectra
Before preceding, note that each residuated lattice 
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From now, L is assumed to be a standard residuated lattice. 

Therefore, we have that in L for each positive a there is a unique b such that 
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The main result in this paper is the following proposition..

Proposition 6. Let 
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Thus, the set of all cyclic L-spectra of order n, 
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 But, the previous result can be useful to some particular cases, as will be seen in the following corollary.  

Corollary 7.  For a given cyclic group G of order 8 [resp. 9] there is an algorithm for obtaining all L-groups with skeleton G.
Proof. By Proposition 6, a sequence 
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It is easy to see that this system is “solved” (L satisfies (1) and  
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). So, we can describe  an algorithm for obtaining all cyclic L-spectra of order 8. Then, by Theorem 3, it is obvious that there is an algorithm for constructing all L-groups with skeleton G, where G  is a cyclic group of order 8. Thus, the first part of the corollary is proved.

Also, by Proposition 6, a sequence 
[image: image215.wmf]4

3

2

1

0

,

,

,

,

s

s

s

s

s

 is a cyclic L-spectrum of order 9 if and only if it is a solution in L of the following system of inequalities:

                                               
[image: image216.wmf],

1

,

1

1

0

¹

=

x

x


                                               
[image: image217.wmf],

1

2

2

1

<

£

Ä

x

x


                                               
[image: image218.wmf],

,

1

2

1

3

2

1

3

x

x

x

x

x

x

«

£

£

Ä

¹


                                               
[image: image219.wmf].

)

(

)

(

1

3

1

4

2

2

3

1

Ä

Ä

Ù

«

£

£

Ú

Ä

x

x

x

x

x

x

x


It is needed to find some “solved” system of inequalities which is equivalent to the system above. It is not hard to show that the following system satisfies our conditions:  
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So, a procedure for computing all L-spectra of order 9 can be described. Now, using Theorem 3 it is obvious that we can describe an effective method of constructing  all L-groups with skeleton G, where G is a cyclic group of order 9. This completes the proof.

For instance, let L be the standard Lukasiewicz structure, and let 
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