Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук» (ФИЦ КНЦ СО РАН, КНЦ СО РАН)

Всероссийская конференция с международным участием «Обработка пространственных данных в задачах мониторинга природных и антропогенных процессов» (SDM-2023) г. Бердск, Новосибирская область, Россия

ОПТИМИЗАЦИЯ ВЫСОТЫ РАСПОЛОЖЕНИЯ АНТЕННЫ ПРИ РЕГИСТРАЦИИ ИНТЕРФЕРЕНЦИОННЫХ РЕФЛЕКТОГРАММ ОТ ЛЕДОВОГО ПОКРОВА С ИСПОЛЬЗОВАНИЕМ СИГНАЛОВ НАВИГАЦИОННЫХ СПУТНИКОВ В ДИАПАЗОНЕ L1

Авторы:

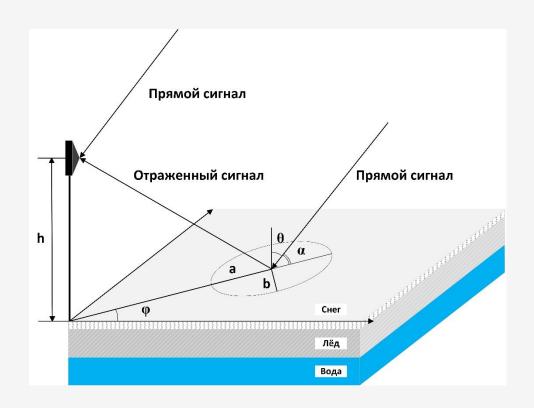
Макаров Д.С., Харламов Д.В., Малимонов М.И

Содержание

- Введение.
- ГНСС-рефлектометрия (ГНСС-Р). Возможности метода в мониторинге ледовых покровов.
- Особенности метода ГНСС-F.
- Экспериментальные результаты тестового цикла ГНСС-Р ледового покрова от ледостава до таяния на разных высотах приемника.
- Итоги и выводы.

Введение

- Сигналы навигационных спутников (далее НС) имеют значимый аналитический ресурс для реализации непрерывного мониторинга земных покровов, атмосферы, ионосферы.
- Многолучевость позволяет по изменению характеристик отраженного или рассеянного средами сигнала восстанавливать значимые для практики свойства этих сред
- Практическое использование ледовых покровов достаточно развито: ледовые переправы, зимники, наледи на реках, профессиональный и любительский подледный лов.
- Не редки трагические ситуации переоценки людьми прочности льда в весенний период.
- Известно, что весной ледовый покров даже при зимней толщине становится менее прочным, его кристаллическая структура насыщается водой.
- Необходим и возможен мониторинг состояния ледового покрова с использованием сигналов навигационных спутников.



Характеристики ГНСС

Характеристики	GPS	ГЛОНАСС		
Число КА	24	24		
Число орбитальных плоскостей	6	3		
Число КА в каждой плоскости	4	8		
Высота орбиты, км	20 000	19 100		
Наклонение орбиты, град.	55	64,8		
Период обращения КА	11 ч : 58 м	11 ч: 46 м		

Схема формирования интерференционного сигнала на приемной антенне.

$$E^{2} = E_{0}^{2} \left[1 + r^{2} + 2r \cos \left(\frac{4\pi h \sin \theta}{\lambda} \right) \right]$$

h — высота антенны;

 θ — угол падения электромагнитной волны, приходящей от навигационного спутника;

r — коэффициент отражения (для линейных и круговых поляризаций);

Формат экспериментальных данных

4	Α	В	С	D	E	F	G	Н	1
1	Nº кадра	№ спутника	Дата	Время	Псевдодальность м	Фазовая псевдодальность, цикл	Азимут	Угол места	Амплитуда
2	6687	23	31.03.2019	13:33:56	18407300.21229608357	696708.27410888671875	-162.8880429131526455	47,99451174	131
3	6688	23	31.03.2019	13:33:57	18407698.34485918656	698800.4564208984375	-162.8930708259478024	47,98711353	138
4	6689	23	31.03.2019	13:33:58	18408096.537660252303	700892.98291015625	-162.89809630695191345	47,97971499	131
5	6690	23	31.03.2019	13:33:59	18408494.785185016692	702985.84779357910156	-162.903119582166795	47,97231603	133
6	6691	23	31.03.2019	13:34:00	18408893.151301272213	705079.19342041015625	-162.90814107438563951	47,96491646	128
7	6692	23	31.03.2019	13:34:01	18409291.623654261231	707173.10841369628906	-162.91316006801872618	47,95751678	149
8	6693	23	31.03.2019	13:34:02	18409690.21704177931	709267.62646484375	-162.91817673227899377	47,95011648	147
9	6694	23	31.03.2019	13:34:03	18410088.899913825095	711362.68312072753906	-162.92319077398656191	47,94271576	128
10	6695	23	31.03.2019	13:34:04	18410487.716384548694	713458.49046325683594	-162.92820283951621718	47,93531456	116
11	6696	23	31.03.2019	13:34:05	18410886.659055057913	715554.96783447265625	-162.93321269951388786	47,92791306	119
12	6697	23	31.03.2019	13:34:06	18411285.674597490579	717651.80274963378906	-162.93822008090455711	47,92051108	129
13	6698	23	31.03.2019	13:34:07	18411684.781718477607	719749.11834716796875	-162.9432252796046896	47,91310851	131
14	6699	23	31.03.2019	13:34:08	18412083.994447998703	721846.96124267578125	-162.94822788937429436	47,9057057	125
15	6700	23	31.03.2019	13:34:09	18412483.318719118834	723945.45512390136719	-162.95322884590066792	47,89830245	126

Сухой и влажный лед

Кристалл (3 ноября)

Кристалл + вода (20 апреля)

Радиофизические свойства пресных льдов и воды в диапазоне частот навигационных спутников L1

Комплексные диэлектрическая проницаемость и показатель преломления в диапазоне L1=1,5 - 1,6 ГГц и при температурах 0°С существенно различаются:

Сухой лёд $\epsilon' \sim 3,0$ - 3,2 и $\epsilon'' \sim 0,0003$, вода $\epsilon' \sim 86$ и $\epsilon'' \sim 7$.

Действительная и мнимая части показателя преломления имеют значения:

для льда $\alpha \sim 1,75, \ \beta \sim 0$ для воды $\alpha \sim 9,27, \ \beta \sim 2,65.$

Характерные средние размеры:

- толщины ледовых покровов водоемов 1cм < **d** < 1- 2 м;
- микрокристаллов льда и микрообъемов воды а ~ 1см:
- длины волн λ диапазона L 1: GPS 19,04 см, ГЛОНАСС (18,8 -18,9) см

Пресноводные водоемы России: $a/\lambda <<1$, $d/\lambda \sim или >>1$

Рефракционная модель ледовых покровов

Влажный лед как смешанный диэлектрик (вода + лед)

$$(\varepsilon_{\text{B}})^{\gamma} = W_{\text{I}}(\varepsilon_{\text{I}})^{\gamma} + W_{\text{B}}(\varepsilon_{\text{B}})^{\gamma},$$

где $W_{_{
m J}},\ W_{_{
m B}}$ объемные доли льда и воды смеси вода + лед, γ – коэффициент, варьируется от 0 до 1, определяется экспериментально или из теоретических предпосылок

Рефракционные параметры среды $n = \alpha + i\beta = \sqrt{\epsilon \epsilon}$,

где α – коэффициент преломления, β – показатель поглощения модельной среды – влажного льда.

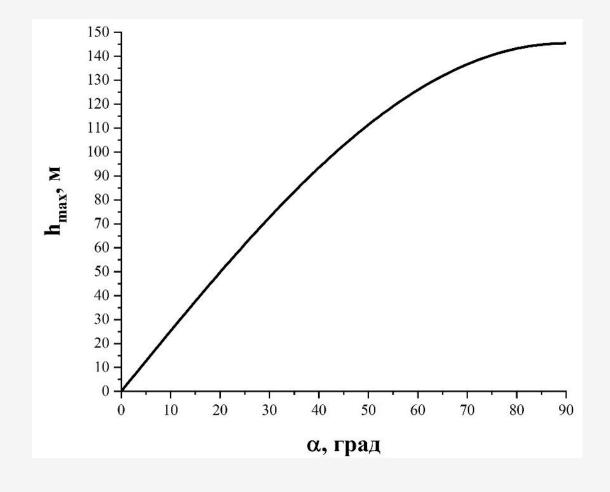
Вещественные и мнимые части комплексных значений ε и *п* связаны соотношениями:

$$\varepsilon' = \alpha^2 - \beta^2$$
, $\varepsilon'' = 2 \cdot \alpha \cdot \beta$.

Показатели преломления и поглощения соответственно определяются выражениями;

$$\alpha = \sqrt{(\sqrt{(\epsilon'^2 + \epsilon''^2) + \epsilon'})}/\sqrt{2}$$
 μ $\beta = \sqrt{(\sqrt{(\epsilon'^2 + \epsilon''^2)})}/\sqrt{2}$.

Г.С. Бордонский. Характеристики микроволновых свойств пресных ледовых покровов при пластической деформации // 2014. Криосфера Земли, 2014, Т. 18, № 2, с. 24–30


В.М. Котляков, Ю.Я. Мачерет, А.В. Сосновский, А.Ф. Глазовский.

Скорость распространения радиоволн в сухом и влажном снежном покрове // 2017 Лёд и Снег⋅ Т. 57, № 1. С 45-56.

Максимальная высота инструмента

Высота антенны ограничена временем когерентности прямого и отраженного сигналов. Время когерентности определяется как разность хода обоих сигналов (Δr), делённая на скорость света (c), и должна быть меньше времени микросхемы спутника $\tau_c=1$ мс / 1023=0.97 мкс.

$$h_{max} \leq \frac{0.97 * 10^{-6} * c * \sin \alpha}{2}$$

Пространственное разрешение

Согласно принципу Кирхгофа, поле волны, отраженной от земной поверхности, формируется на антенне токами, возбуждаемыми падающей волной на поверхности в области, ограниченной первой зоной Френеля, которая является зондируемым участком. Расстояние от антенны до центра первой зоны Френеля на поверхности зондируемого объекта может быть оценено по формуле:

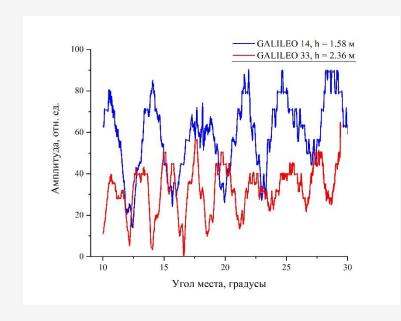
$$\rho_c = h \tan \theta$$

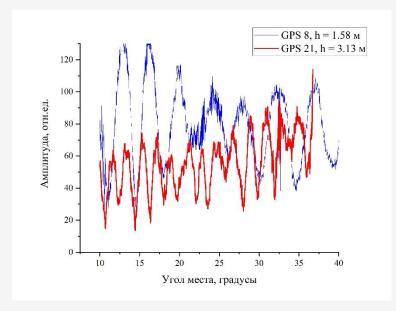
где h — высота фазового центра антенны. θ - зенитный угол спутника ГНСС (θ = 90° - α). Первая зона Френеля ограничена эллипсом с большой, a, и малой, b, полуосями

$$a=rac{\sqrt{h\sin\alpha}}{\sin^2\alpha}$$
, $b=rac{\sqrt{h\sin\alpha}}{\sin\alpha}$

Тестовая площадка и оборудование

Приемник НСРП-04, Антенны с право круговой поляризаций; Штатив для антенны; Место проведения — оз. Бугач, г. Красноярск



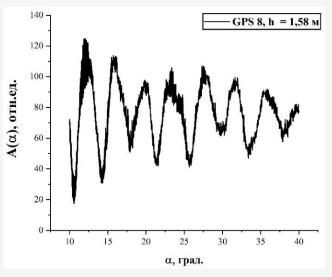

Серия экспериментов

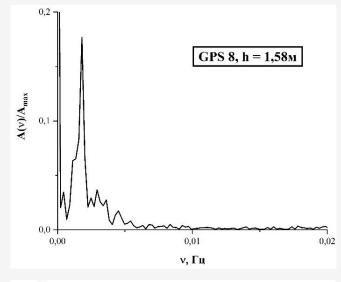

Дата проведения	Высота фазового центра антенны, м	Толщина льда, м	Время сеанса	
07.12.2022	3,18	~0,4	2:7:10	
22.12.2022	3,18	~0,51	2:37:15	
15.03.2023	1,58	~ 0,95	1:28:30	
15.05.2025	2,36	0,93	1:24:45	
05.04.2023	1,58	~ 0 0	1:52:32	
05.04.2025	3,13	~ 0,9	1:27:42	
21.04.2023	1,58	0,68 – 0,78	1:35:29	
21.04.2023	3,13	0,00 - 0,78	1:17:45	

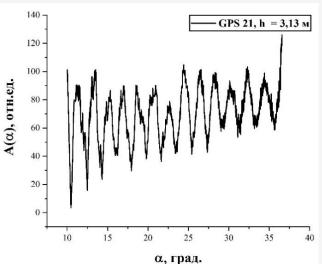
Интерференционные рефлектограммы

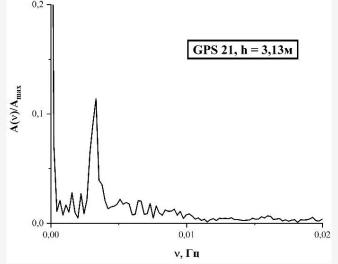
Обработка результатов

объекта				GLONASS_1	<u> </u>	Добавить свой график				
Опорные точки	Склон от севера к югу 15 с уменьшением к месту распо	ложения антенн.		GLONASS_14	•	Очистить графики				
				GLONASS_15	<u> </u>					
Кто добавил	Харламов		GLONASS_17	<u> </u>	Одиночный					
		E Выбрать файл для заполнения Сохранит	гь карточку эксперимента Удалить экспериы	GLONASS 18		Множественный				
ДБ от номера кадра										
GALILEO_10	×	GALILEO_11	×	GALILEO_12		×				
ti ti C	-O- GALILEO_10	50 ₁	-O- GALILEO_11	11 11 C		-O- GALILEO_12				
40 - WHWW WWW.		40-14/14-14-14-14-14-14-14-14-14-14-14-14-14-1	ra-valu-valushif-supelory/sam-pafe/1944	30 - June Mary Market	//// _{/////////////////////////////////}	1.4				
20 -		20		20-						
0 40 2,000	4,000 6,000 8,000 8,704	10 2,000 4,0	000 6,000 8,000 8,704	0 39 2,000	4,000	6,000 7,726				

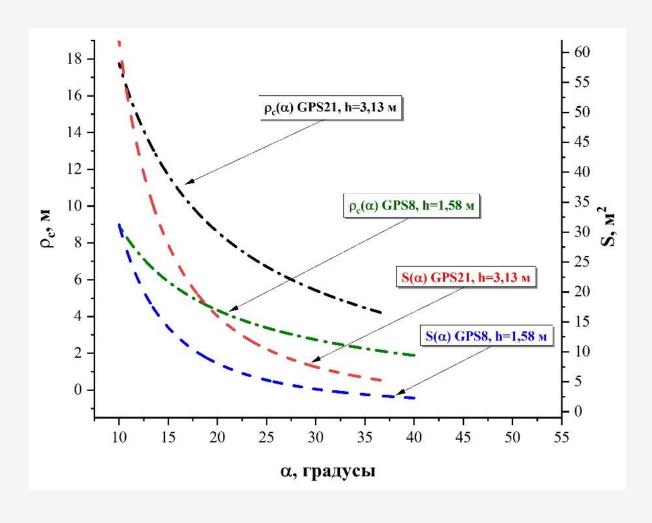

Первичная обработка была произведено с помощью облачного сервиса первичной обработки данных. Были отфильтрованы и подобраны наиболее подходящие сеансы регистрации для дальнейшего анализа по следующим критерием: диапазон азимута лежит в диапазоне сканирования зондируемого объекта и одинаковый угол места во всех сеансах (в нашем случае от 10° до 40°).




Дальнейшая математическая обработка осуществлялась с помощью пакета OriginPro



Обработка с помощью быстрого Фурье-преобразования



- Среднее значение амплитуды: для спутника GPS 8 (h=1,58 м) 76,08757, а для GPS 21 (h=3,13 м) 70,32571
- Изменение периода функции
- Для измерений с высотой приемной антенны 1,58м другие частоты (помимо основной) наиболее выражены чем с высотой 3,13м

Разрешение метода

Результаты зависимости площади зондируемого участка от угла места $S(\alpha)$ и расстояния до центра зондируемого участка от угла места $\rho_c(\alpha)$

Итоги и выводы

- Проведена серия тестовых измерений интерференционных рефлектограмм ледовых покровов озера вблизи города Красноярск в стационарном зимнем состоянии и весной, в период прогрева и таяния. Интервал толщин льда от 40 до 95 см.
- Измерения осуществлялись автономным приемник-регистратор НСРП-04, изготовитель ООО «Инжиниринговое бюро Феникс», г. Красноярск с использованием антенн, принимающих сигналы правой круговой поляризаций. Приемные антенны устанавливались на льду. Высота расположения фазового центра антенн варьировалась в интервале 1,58 3,18 м.
- С увеличением высоты расположения антенны площадь зондируемой области увеличивается, но уменьшается диапазон углов места, при которых наблюдается интерференция.
- Изменения периода рефлектограммы из-за высоты антенны позволяет сократить временные затраты по проведению сеансов записи.
- После обработки рефлектограмм с помощью быстрого Фурье преобразования, сеансы с более низкой высотой антенны показывают лучшую информативность.

Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук» (ФИЦ КНЦ СО РАН, КНЦ СО РАН)

СПАСИБО ЗА ВНИМАНИЕ!