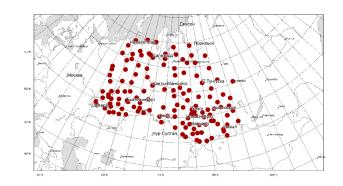


Актуальность

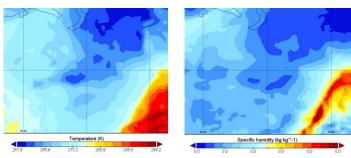
Отмечается увеличения частоты появления конвективной облачности и сумм осадков за теплый период на территории Западной Сибири, а значит увеличение угроз материального ущерба отраслям экономики и безопасности людей.

Современные средства Д33 позволяют с хорошей точностью восстанавливать вертикальные профили физических характеристик атмосферы.

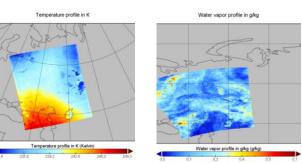
Полученные восстановленные метеопараметры могут являться альтернативным источником информации о стратификации атмосферы, особенно в регионах с слабо развитой аэрологической сетью и отсутствием радиолокаторов.


Современные методы машинного обучения и искусственные нейронные сети являются перспективными технологиями в задачах обнаружении атмосферных явлений.

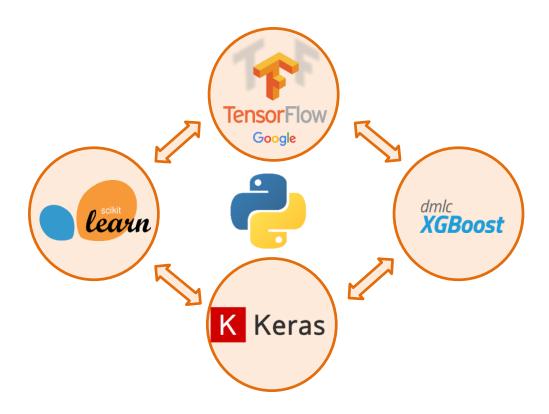
Материалы исследования


Наземные наблюдения

Данные об атмосферных явлениях на станциях по 135 станциям, расположенным на территории Сибири


Реанализ ERA5

Почасовые данные о параметрах атмосферы на 37 высотных уровнях с разрешением 0,1° х 0,1°


Спутниковые измерения

Восстановленные по измерениям полярноорбитальных КА вертикальные профили температуры и удельного влагосодержания в ПК MIRS

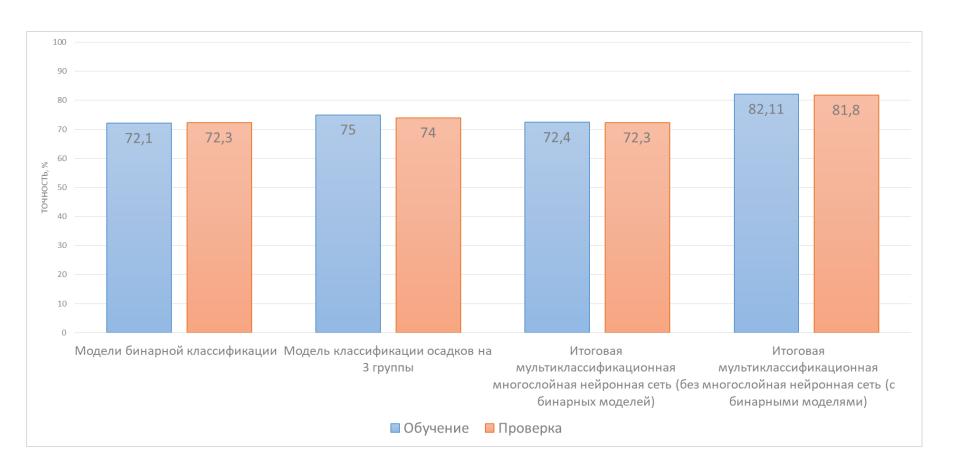
Методы исследования

Использовались открытые программные библиотеки для машинного обучения и статистического анализа на языке программирования Python

1. Разработка архитектуры и обучение моделей

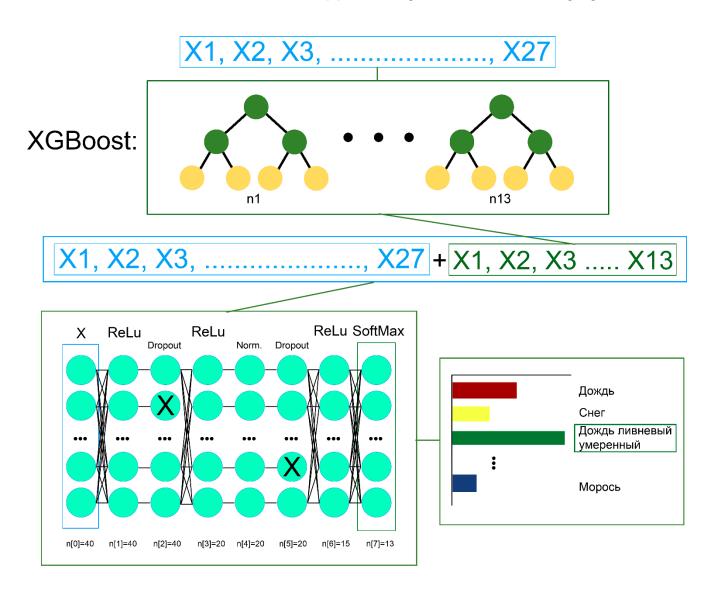
Этапы обучения моделей

Этапы обучения:


- Нормализация выборки;
- Модели бинарной классификации для каждого явления(XGBoost);
- Конвертация выходных сигналов предыдущих процедур в дополнительные предикторы);
- Мультиклассификационная многослойная нейронная сеть прямого распространения;
- Сохранение параметров каждой модели

Этапы проверки:

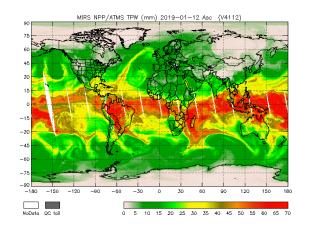
- Нормализация выборки;
- Проверка каждой модели бинарной классификации;
- Конвертация выходных сигналов предыдущих процедур в дополнительные предикторы;
- Проверка мультиклассификационной многослойной нейронной сети прямого распространения.

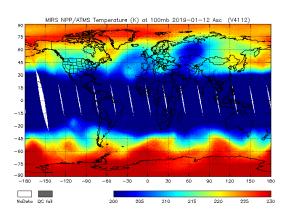

1. Разработка архитектуры и обучение моделей

Результирующая точность моделей для обучающей и проверочной выборок

1. Разработка архитектуры и обучение моделей

Финальная блок-схема технологии детектирования атмосферных явлений




Восстановление вертикальных профилей метеопараметров по спутниковым данным

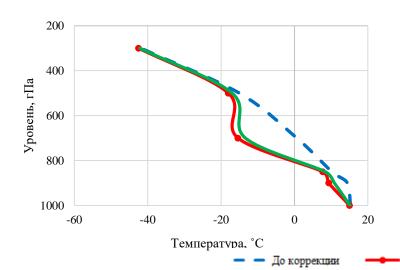
Используется специализированный программный комплекс MIRS, разработанный Центром спутниковых приложений и исследований NOAA / NESDIS (STAR).

Расчетные алгоритмы системы прошли многочисленные проверки, разработчиками проводится ежедневная оценка качества данных на основе данных прогностических моделей*

Использование данных ПК рекомендовано в оперативной практике и для целей климатических исследований.

Сравнительный анализ вертикальных профилей по данным ПК MIRS с данными реанализа

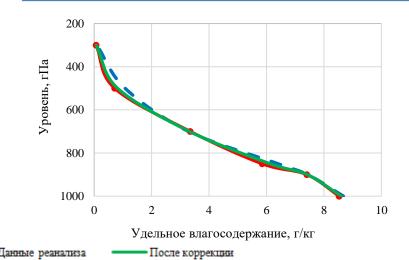
Изобарическая высота, гПа	Физическая величина	Средняя абсолютная ошибка	
		NCEP	ERA5
1000	T, °C	2,58	2,65
850	T, °C	2,14	2,32
700	T, °C	1,55	1,45
500	T, °C	1,43	1,21
300	T, °C	1,56	1,61
1000	Q <i>,</i> г/кг	1,62	1,30
850	Q <i>,</i> г/кг	1,33	1,01
700	Q <i>,</i> г/кг	0,7	0,75
500	Q <i>,</i> г/кг	0,15	0,25
300	Q <i>,</i> г/кг	0,09	0,033


Блок-схема формирования обучающей выборки для создания моделей коррекции вертикальных профилей

ID спутника Широта Метаданные спутника Долгота День в году **TK MIRS** X1, X2, X3 ... X12 ERA5

Полученные результаты

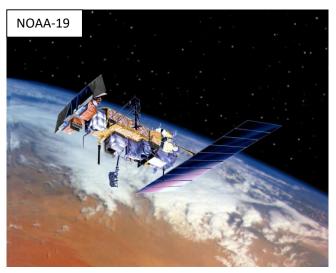
Авторский алгоритм коррекции, в основе которого лежат 12 обученных нейронных сетей прямого распространения.


Коррекция восстановленных профилей метеопараметров позволяет уменьшить ошибку восстановления значений температур и удельного влагосодержания в среднем на 42 % и 38 % соответственно.

Отклонения профилей метеопараметров, восстановленных в ПК MIRS, после коррекции

Среднеквадратическая ошибка

Высота, гПа				
Бысота, тта	Температура, °С	Удельное влагосодержание, г/кг		
1000	2,07	1,03		
900	1,89	0,95		
850	1,71	0,93		
700	1,16	0,75		
500	1,06	0,27		
300	1,42	0,03		



Космические аппараты

KA NOAA-19 (AMSU / MHS) NOAA-20 (AMSU / MHS) METOP-B/C (AMSU / MHS) Suomi-NPP (ATMS)

За сутки принимается порядка 16 – 18 снимков

Входные и выходные данные

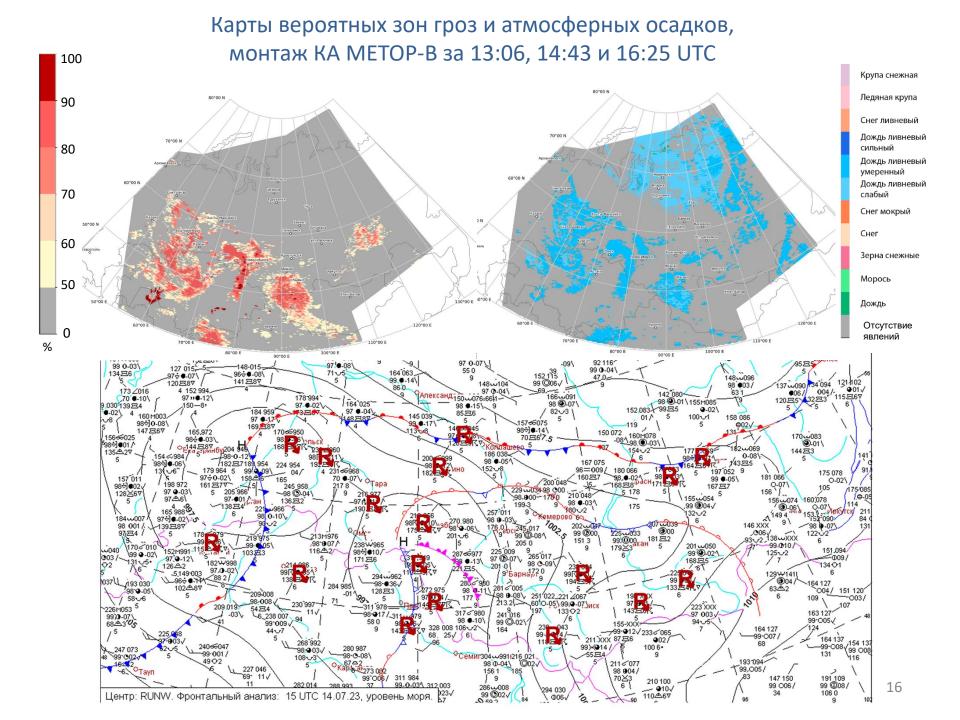

Входные данные:

- Адаптированные вертикальные профили температуры и удельного влагосодержания на изобарических поверхностях 1000, 900, 850, 700, 500, 300 гПа;
- Рассчитанные разности значений Т между изобарическими поверхностями 1000/850, 1000/700, 1000/500 гПа;
- Рассчитанные вертикальные профили температуры точки росы, относительной влажности и дефицита точки росы на изобарических поверхностях 1000 300 гПа;
- Рассчитанные значения индексов неустойчивости Vertical Totals (VT), Cross Totals (CT), Total Totals (TT) и К-индекс (K);
- Рассчитанная высота нижней границы конвективной облачности.

В каждом пикселе спутникового снимка производится расчет вероятности наличия следующих атмосферных явлений:

- гроза
- дождь
- морось
- зерна снежные
- снег
- снег мокрый
- дождь ливневый слабый
- дождь ливневый умеренный
- дождь ливневый сильный
- снег ливневый
- ледяная крупа
- крупа снежная
- снег ливневый мокрый
- отсутствие явлений.


Этапы проверки моделей



Этапы проверки:

- Нормализация выборки
- Проверка каждой модели бинарной классификации.
- Конвертация выходных сигналов предыдущих процедур в дополнительные предикторы);
- Проверка мультиклассификационной многослойной нейронной сети прямого распространения

Результирующая точность моделей

Благодарю за внимание

г.Новосибирск , ул.Советская 30 Телефон: (383) 363-46-05 kav@rcpod.siberia.net , sol@rcpod.ru