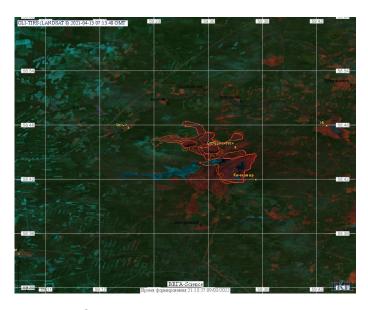

01 GMT

Возможности использования технологии объектного мониторинга для исследования районов расположения крупных антропогенных объектов

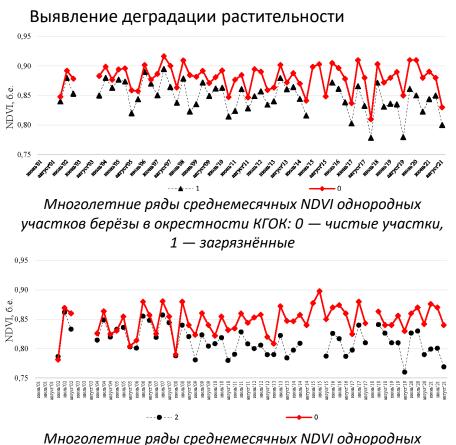
Константинова А. М.¹, Лупян Е.А.¹, Кашницкий А.В.¹, Саворский В.П.² ИКИ РАН, Москва ФИРЭ РАН, Фрязино

Всероссийская конференция с международным участием «Обработка пространственных данных в задачах мониторинга природных и антропогенных процессов», 22-25 августа 2023 г., Новосибирск

Технология объектного мониторинга

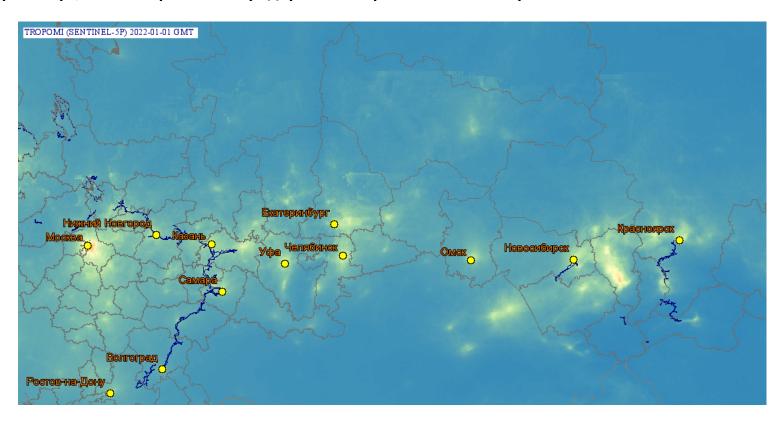

В отделе «Технологий спутникового мониторинга» была разработана **технология объектного мониторинга**, инструменты которой позволяют автоматически рассчитывать **интегральные характеристики** (mean, max, min, sum и т. п.) на основе различных тематических продуктов/канальных данных **в границах произвольных полигонов исследуемых объектов** по имеющимся в архивах ЦКП «ИКИ-Мониторинг» спутниковых данным, в том числе оперативным.

В том числе инструменты позволяют постоянно следить за окружающей средой вокруг крупных источников загрязнений.

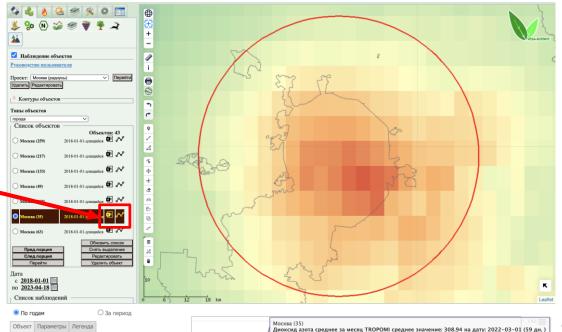

Инструменты для работы с объектами доступны в информационной системе (ИС) Вега-Science (http://sci-vega.ru/).

Долговременный постоянный мониторинг окружающей среды объектов вокруг крупных промышленных объектов

С помощью технологии объектного мониторинга в ИС Bera-Science ведется постоянный дистанционный мониторинг 60 районов.

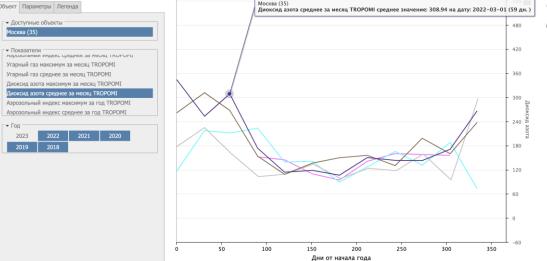


Отвалы Качканарского горнообогатительного комбината (ГОК) по данным спутника Landsat 8



Постоянный мониторинг источников выбросов различных газов

В том числе инструменты позволяют постоянно следить за локализованными источниками различных газов на основе композитных изображений с концентрацией малых газовых составляющих, имеющимися в архивах ЦКП «ИКИ-Мониторинг». Например, за выбросами диоксида азота (NO₂) в крупных городах и промышленных центрах, где основными источниками выброса являются автотранспорт, теплоэнергетика и предприятия нефтехимической отрасли.



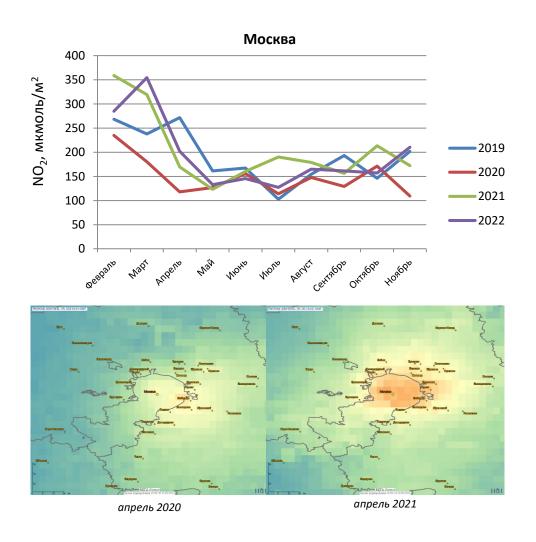
Инструменты работы с объектами в веб-интерфейсах

Картографический веб-интерфейс

Выгрузка в excel и переход к граф<mark>и</mark>кам

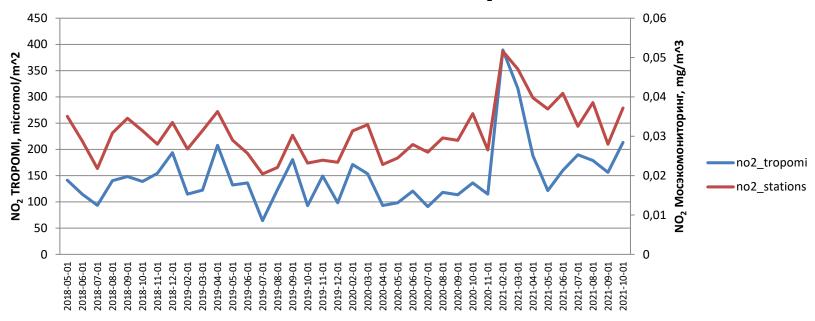
Графический веб-интерфейс

Пример анализа: рейтинг загрязнённости городов России

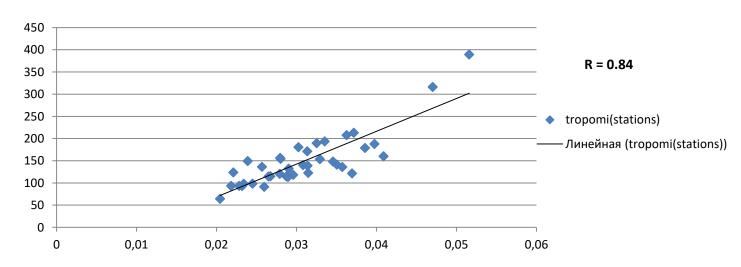

С помощью инструментов объектного мониторинга был составлен рейтинг загрязнённости городов России диоксидом азота.

Город	2019	2020	2021	2022	2019-2022	Население
Москва	180,29	166,19	214,74	203,23	191,11	12 645 258
Новокузнецк	175,29	138,7	145,41	176,11	158,88	542223
Иркутск	133,33	125,66	144,66	161,16	141,20	617382
Челябинск	127	102,25	132,37	140,12	125,44	550362
Кемерово	119,3	115	125,3	139,19	124,70	1 183 624
Санкт-Петербург	138,38	82,28	124,47	125,14	117,57	5 380 923
Новосибирск	103,29	100,11	114	118,58	109,00	1 097 937
Красноярск	104,61	92,15	104,07	122,3	105,78	1 620 746
Уфа	87,73	86,80	84,66	111,20	92,60	1 130 497
Екатеринбург	81,07	81,69	95,38	106,15	91,07	1 239 102
Нижний						1 494 333
Новгород	84,22	79,77	86,88	110,22	90,27	
Казань	73,52	83,64	93,76	102,11	88,26	1 258 257
Самара	73	78,9	76,2	76,59	76,17	1 140 734
Омск	62,95	66,69	76,08	84,78	72,63	1 133 045
Воронеж	64,66	56,93	66,93	75,06	65,90	1 049 670
Ростов-на-Дону	65,85	59,48	62,22	66,29	63,46	1 045 981
Пермь	63,27	59,27	70,54	58 <i>,</i> 54	62,91	1 136 199
Волгоград	44,23	40,11	44,23	42,70	42,82	1 002 973

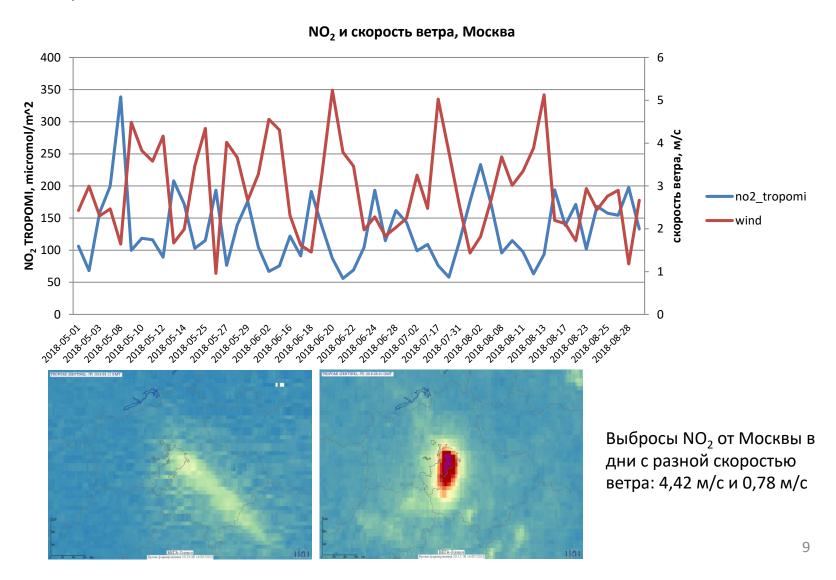
6


Пример анализа: сезонные тренды

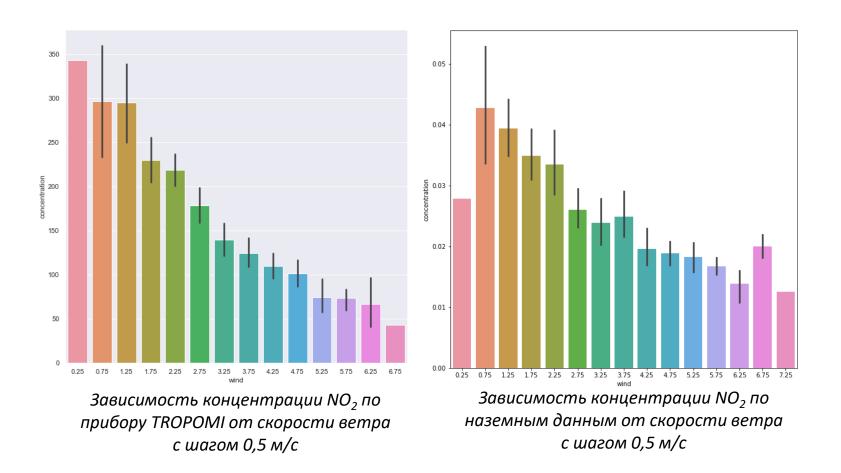
Были выявлены сезонные тренды, связанные с отопительным периодом, а также тренд снижения концентрации во время распространения COVID-19.



Пример анализа: сравнение с наземными данными

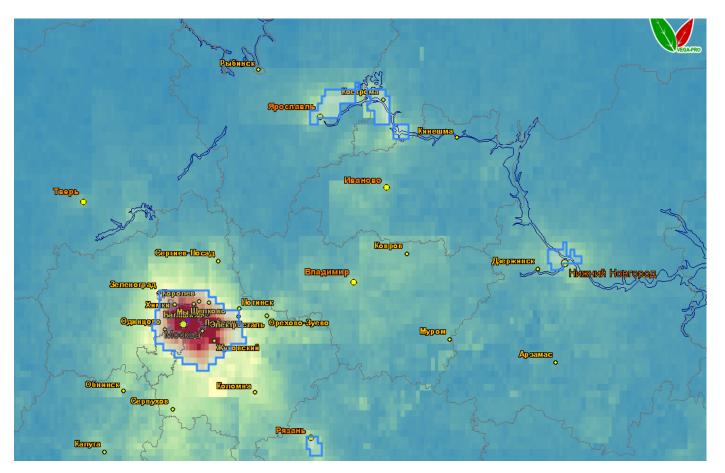


tropomi(stations) – ежемесячные данные

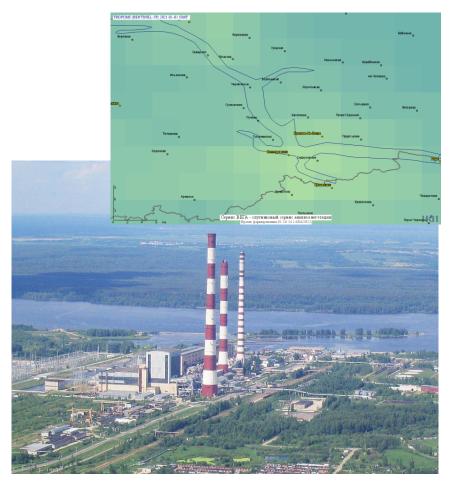


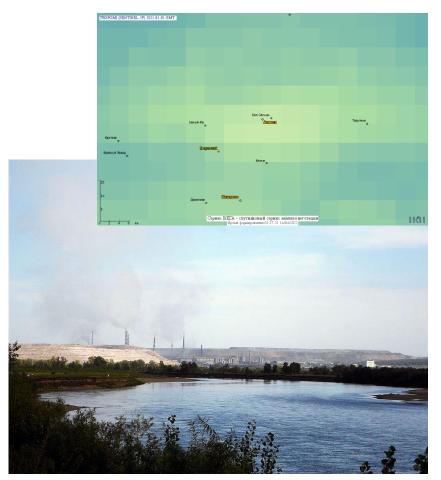
Пример анализа: сравнение с метеоданными

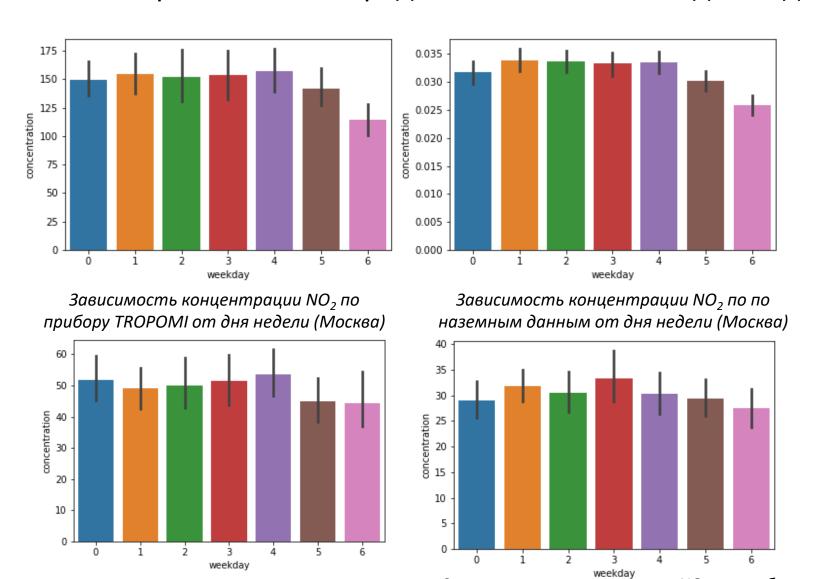
На примере летних месяцев хорошо видно, что при усилении ветра значительно падает концентрация диоксида азота.


Выбор безветренных дней

В качестве безветренных дней были взяты дни со скоростью ветра менее 1,5 м/с


Выбор границ источников


На основе безветренного композитного изображения со средней концентрацией NO_2 были оконтурены кластеры — источники выбросов NO_2 . Выделение кластеров происходит по порогу (60 micromol/m²). Для каждого выделенного кластера порог был пересчитан в зависимости от локального max.


Распознавание промышленных выбросов NO₂

Сравнение выбросов источников с численностью населения, попавшему в кластер, позволяет выделять промышленные районы, в которых находятся крупные источники загрязнения. Среди них, например, оказались Волгореченск (16 тысяч человек), в котором находится Костромская ГРЭС и «Газпромтрубинвест», и Ачинск (104 тысячи человек), который входит в тройку крупнейших промышленных центров Красноярского края, а градообразующим предприятием является Ачинский глинозёмный комбинат.

Анализ загрязнённости городов в зависимости от дня недели

Зависимость концентрации NO_2 по прибору TROPOMI от дня недели (Новосибирск)

Зависимость концентрации NO_2 по прибору TROPOMI от дня недели (Красноярск)

Выводы

- в ИС Bera-Science доступны инструменты для постоянного наблюдения за объектами, с помощью которых в автоматическом режиме можно осуществлять мониторинг районов расположения крупных антропогенных объектов, в том числе источников выбросов различных газов на основе спутниковых данных, имеющихся в архивах ЦКП «ИКИ-Мониторинг»;
- в полученных результатах хорошо видны сезонные тренды выбросов NO₂, связанные с отопительным периодом, а также снижение выбросов NO₂ в период ограничительных мер
- ▶ верификация спутниковых данных с наземными измерениями усложнена толщиной атмосферы, но в первом приближении можно сделать вывод, что концентрация NO₂ по TROPOMI линейно коррелирует с данными наземных измерительных станций
- на уровень концентрации диоксида азота вокруг источника большое влияние оказывают метеоусловия (ветер, наличие инверсии и т.д.)
- использование безветренных данных позволяет локализовать источники выбросов газов, оценить их мощность
- сравнение мощности выбросов источников с численностью населения позволяет выявить промышленные объекты среди крупных городов