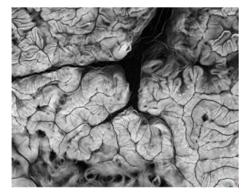


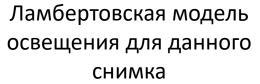
Всероссийская конференция с международным участием «Обработка пространственных данных в задачах мониторинга природных и антропогенных процессов» (SDM-2023)

г. Бердск, Новосибирская область, Россия

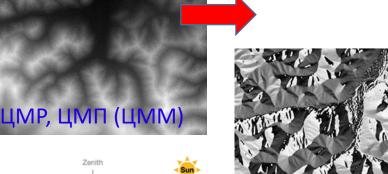
Сравнительная оценка алгоритмов топографической коррекции мультиспектральных снимков

Добрецов Н.Н. 1,2 , Манасян Т.Л. 1,3

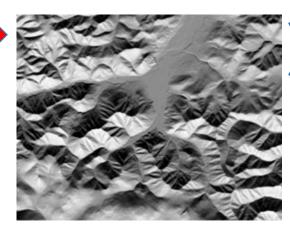

- 1 Институт геологии и минералогии СО РАН им. В.С.Соболева (ИГМ СО РАН);
- 2 Федеральный исследовательский центр информационных и вычислительных технологий (ФИЦ ИВТ);
 - 3. Новосибирский государственный университет


Топографическая коррекция

(основы метода)



North (0° Azimuth)

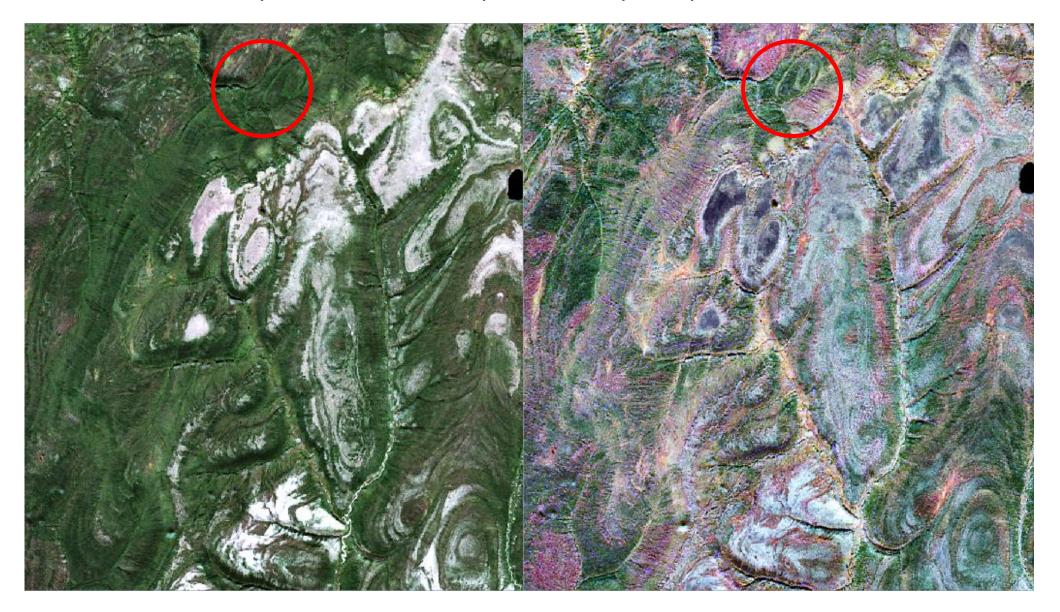


$$cos(i) = cos(\theta_s)cos(\theta_g) +sin(\theta_g)cos(\varphi_s - \varphi_g)$$

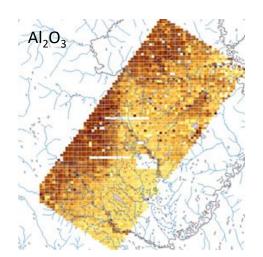
South (180° A

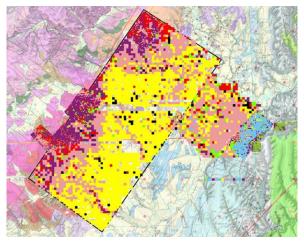
Teillet regression

 $L_c = L - a \cdot cos(i) - b + \overline{L}$

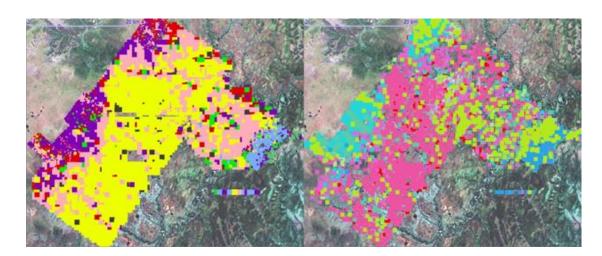


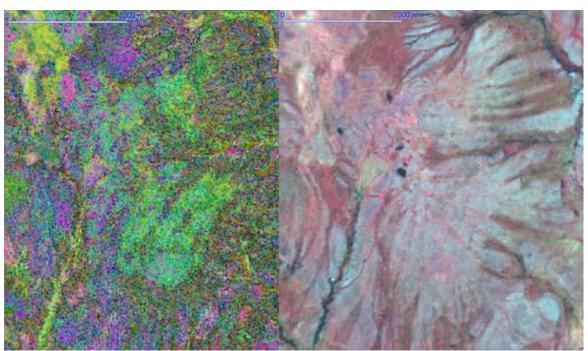
Исходный снимок



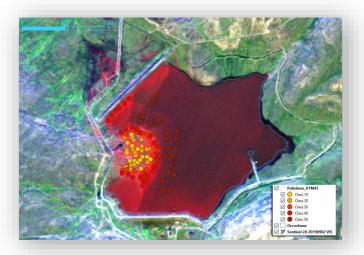

Скорректированный снимок

Качественная предварительная обработка для прогнозируемого выравнивания спектральных характеристик

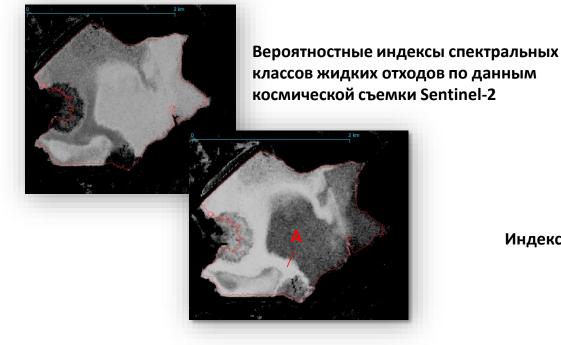

Вероятностный анализ по спектральным свойствам поверхности (по геохимии)

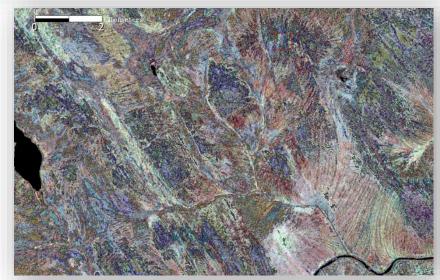


8 классов по геохимии


16 классов по геохимии и спектрам

На вещественном индексе (сверху) хорошо видны контуры тел (зеленые тона), которые не различимы на исходном снимке. По материалам геологической съемки эти породы (справа) соответствуют отложениям Перми (P_{1or})

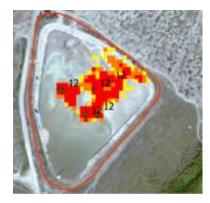

Вероятностный анализ по спектральным свойствам поверхности (по эталонам)

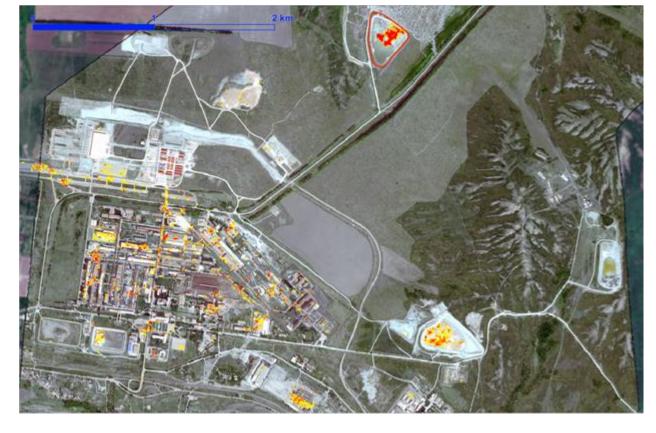

Индекс железистости пород. Траппы. Г.Норильск. Индекс рассчитан по спектрам отстойника Надеждинского комбината (Масс. Fe₂O₃)

Анализ вещества хвостохранилища комбината «Надежда», г. Норильск

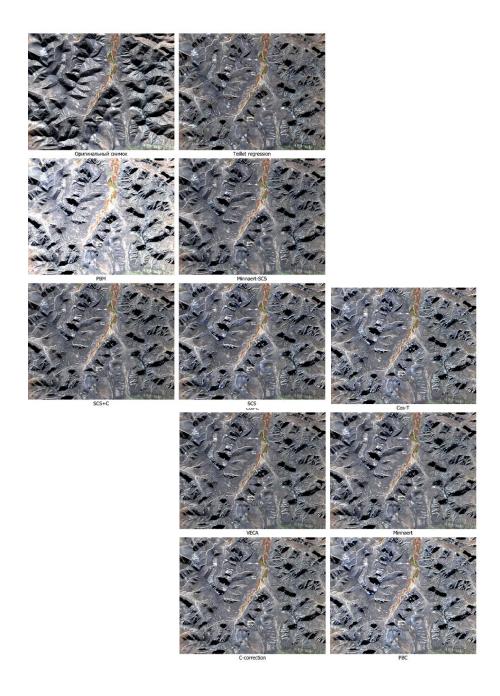
Индекс кремнезема. Анабарский щит. Индекс рассчитан по спектрам эоловых песков (Масс. SiO₂)




Вероятностный анализ по спектральным свойствам поверхности


(по эталонам)

Распределение поверхностных загрязнений территории промплощадки АО «УКТМК» (Усть-Каменогорск, Казахстан) материалом, спектрально-идентичным материалу хвостохранилища комбината


Категории методов коррекции (по М. Р. Bishop et al., 2019):

- *эмпирические методы*. Базируются на модели освещения и других производных от ЦМР слоях и пытаются имитировать интенсивность отраженного прямого солнечного излучения. Делятся на:
 - предполагающие Ламбертовские условия (отражение не зависит от угла наблюдения);
 - предполагающие направленное (анизотропное) отражение;
 - использующие корреляцию между значениями каналов исходного изображения и модели освещения;
- методы извлечения спектральных признаков (spectral-feature extraction). Являются простым линейным преобразованием спектральных каналов без использования вспомогательных данных, например, ЦМР;
- моделирование переноса излучения (radiation-transfer modeling). Базируются на более сложных и физических моделях освещения, нежели Ламбертовские приближения. В т.ч. Могут учитывать отбрасываемые тени. Требуют значительно большего объема входных данных, например для расчета BRDF. Обладают меньшей гибкостью по сравнению с другими методами.
- **комплексные методы**. Включая использование Machine Learning и др. методы ИИ. Дорого. Мало распространено. Пока, приемлемо работает в видимом диапазоне.

Мы насчитали более 30 более или менее различающихся алгоритмов ... + их клоны ...

Проблемы:

- Несоответствие ЦМР и снимка (в первую очередь: геометрия, включая масштаб; актуальность; функциональность ЦМР);
- Упрощенные физические модели освещения и/или алгоритмы топокоррекции;
- Сложность (невозможность?) оценки результата за пределами видимого диапазона;

Общие зависимости выявленные в результате сравнительного анализа:

- Общий уровень освещенности сцены, сезон (особенно актуально для Заполярья). Для одной и той же сцены могут быть эффективны различные методы, в зависимости от времени съемки;
- Предобработка ЦМР (масштаб, «подгонка» геометрии, генерализация производных);

Использованные данные:

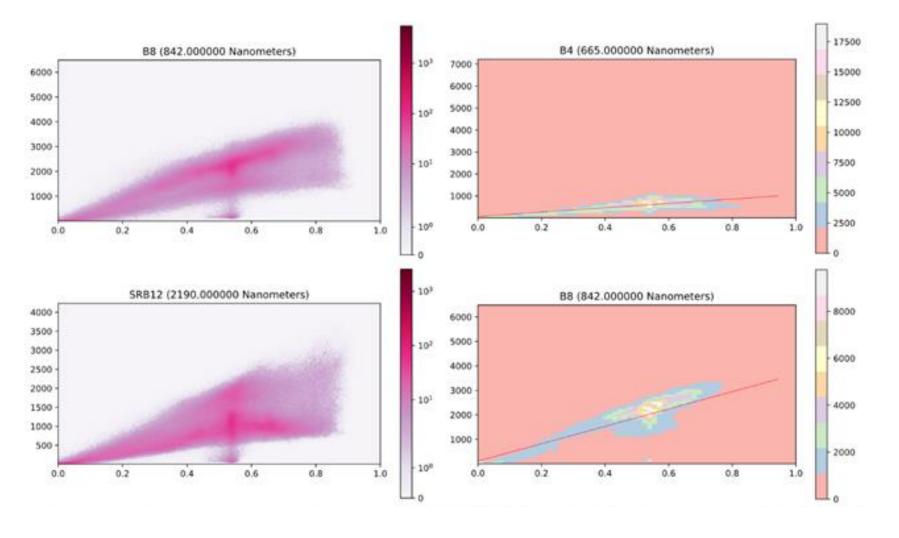
Спутник Sentinel-2;

Территории тестирования: Чукотка, Камчатка, Норильск, Анабар, Забайкалье, Алтай, Восточный Казахстан, Тянь-Шань (Каратау);

Временные серии от 3 до 25 снимков;

Как оценивали?

Статистика: Разработан метод ранжирования результатов топографической коррекции на основе нескольких статистических критериев (метрик):

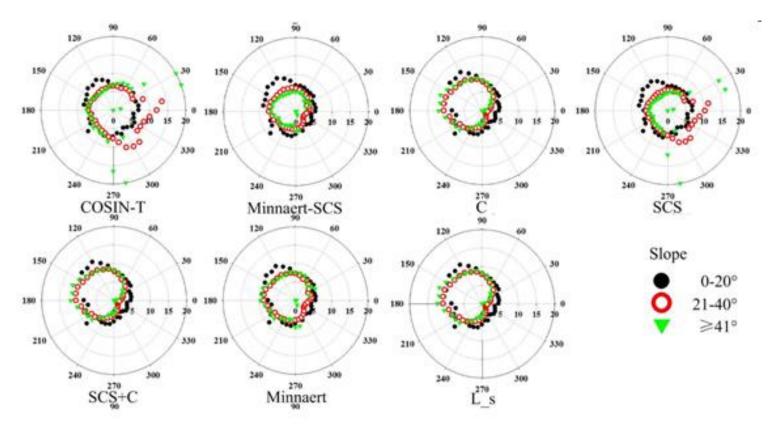

Название метрики	Описание	Критерий относительно оригинального изображения
Среднеквадратическое отклонение	Проверка увеличения однородности значений каналов изображения	Уменьшение
Коэффициент вариации	Проверка увеличения однородности значений каналов изображения	Уменьшение
Интерквартильный интервал	Проверка увеличения однородности значений каналов изображения	Уменьшение
Медиана	Коррекция должна увеличивать однородность, но не смещать медианные значения каналов. Метрика штрафует алгоритмы коррекции, как за увеличение, так и за уменьшение медиан спектральных яркостей	Отсутствует
Количество выбросов по порогу	Метрика штрафует алгоритмы коррекции за наличие выбросов. Выбросом считается значение пикселя, которое меньше минимального значения в соответствующем канале исходного изображения, либо больше максимального значения	Отсутствует, у оригинального изображения значение метрики всегда 0, улучшить данное значение невозможно
Количество статистических выбросов	Метрика штрафует алгоритмы коррекции за наличие выбросов. Выбросом считается значение пикселя входного канала, не попавшее в интервал [Q1 - 1.5*IQR, Q3 + 1.5*IQR], где IQR - интерквартильный интервал значений текущего канала, Q1 - первый квартиль, Q3 - третий квартиль	Уменьшение
Коэффициент детерминации значений канала и модели освещения	Проверка уменьшения корреляции между значениями каналов изображения и моделью освещения	Уменьшение

Ранжирование:

- 1. Вычисленные метрики нормализуются (с предварительным разделением на «положительные» и «отрицательные»)
- 2. Рассчитывается рейтинг канала (взвешенная сумма значений всех метрик для каждого канала). При этом, оператор может заранее задать вес метрики.
- 3. Значения рейтингов каналов комбинируются в одно скалярное значение для всего снимка. Используется сумма или другой критерий (макс/мин/среднее, взвешенная сумма и т. д.)

Как оценивали?

Корреляция: между углом падения солнечных лучей и спектральными яркостями каналов изображений:



Ранжирование:

- 1. Вычисление линейной регрессии по графику корреляции.
- 2. Результат оценивается по коэффициентам корреляционной кривой. Результат нормализуется.
- 3. Значения рейтингов каналов комбинируются в одно скалярное значение для всего снимка. Используется сумма или другой критерий (макс/мин/среднее, взвешенная сумма и т. д.)

Как оценивали?

Розы-диагмаммы: между углом падения солнечных лучей и спектральными яркостями каналов изображений:

Полярный угол диаграммы-розы представляет собой экспозицию склонов, а радиус - средние значения спектральных яркостей. На рисунке пример для одного канала. Исходное изображение обозначено как L_s

Ранжирование:

- 1. снимок делится на несколько групп в соответствии с интервалами уклона и экспозиции местности. Рассчитываются средние значения спектральных яркостей подгрупп и наносятся на диаграмму-розу.
- 2. Результат оценивается по критерию приближения к окружности с радиусом одинаковым для всех групп. Результат нормализуется.
- 3. Значения рейтингов каналов комбинируются в одно скалярное значение для всего снимка. Используется сумма или другой критерий (макс/мин/среднее, взвешенная сумма и т. д.)

Результат:

- Анализ большой выборки данных подтвердил отсутствие «идеального» алгоритма топокоррекции.
- В зависимости от условий съемки, для одной и той же местности эффективными могут оказаться алгоритмы топокоррекции.
- Разработан метод оценки результатов топографической коррекции на основе комбинации критериев качества.
- Создан программный модуль топографической коррекции мультиспектральных снимков с возможностью сравнительной оценки данных алгоритмов, интегрирующийся в среду геоинформационной системы QGIS в виде плагина.

Плагин к QGIS доступен в официальном списке дополнительных модулей к QGIS (плагин «Terraform»), или по адресу:

https://plugins.qgis.org/plugins/Terraform/