Метод решения задачи Стефана с использованием несогласованных сеток

М.В. Шиловский

4 октября 2010 г.

Введение

Более 110 лет задача Стефана привлекает внимание исследователей. С. Vuik¹ приводит следующие данные о среднем числе публикаций, посвященных задаче Стефана, за год:

Период	Среднее число публикаций за год
1931 - 1940	0.1
1941 - 1950	1.8
1951 - 1960	4
1961 - 1970	7.8
1971 - 1980	23.3
1981 - 1982	55

Такая активность объясняется как высокой сложностью задачи Стефана для аналитического и численного решения, так и большой практической значимостью. С помощью задачи Стефана описывается множество явлений и процессов, связанных с фазовыми переходами, таких, как таяние льда, кристаллизация расплавов, сварка и другие.

Сложность задачи Стефана заключается в том, что движущаяся граница делает решение уравнений намного более трудным, чем решение тех же самых уравнений в области с фиксированными границами [1]. Скорость движения фронта в реальных процессах, как правило, невысока (для таяния льда, например, порядка 10⁻³ м/с), в то же время вблизи

 $^{^{-1}}$ Vuik C. Some historical notes about the Stefan problem // Nieuw Archief voor Wiskunde, 4e serie. 1993. T. 11, Nº 157-167. C. 5–9

фронта градиент решения обычно значителен, поэтому возникает необходимость в адаптивных сетках для корректного учета таких особенностей. Однако построение согласованной сетки для всей расчетной области является вычислительно затратной процедурой, в то время как переразбиение только области вблизи фронта с сохранением конформности может привести к образованию «плохих» элементов. Естественное желание отказаться от требования согласованности элементов.

В работе рассматривается возможный алгоритм решения задачи Стефана с использованием подхода, когда область вблизи фронта триангулируется отдельно и накладывается на фиксированную «базовую» сетку. Для решения основного уравнения используется конформный метод конечных элементов вне области фронта в сочетании с разрывным методом Галеркина вблизи фронта. Такой подход позволяет достаточно просто работать с несогласованными сетками, оставляя вычислительные затраты приемлемыми. Для решения задачи Стефана так же необходим алгоритм определения позиции фронта в каждый момент времени; был выбран алгоритм, основанный на так называемом методе проб (trial method). Детали более подробно будут рассмотрены в соответствующих разделах.

1 Математическая постановка

1.1 Задача Стефана

Рассмотрим двухфазную задачу Стефана. Пусть в области Ω заданы подобласти Ω_l и Ω_s , заполненные жидкой и твердой фазами соответственно, $\Omega_l \cup \Omega_s = \Omega$. Температура жидкой и твердой фаз в начальный момент времени равна $T_l(0)$ и $T_s(0)$, соответственно. На границе области Ω поддерживается температура $T_g = T_g(x)$. Тогда математическая модель может быть записана:

$$\rho_i c_i \frac{\partial T}{\partial t} - div \left(K_i \dot{g} rad \left(T \right) \right) = 0, i = \{l, s\}, \tag{1}$$

$$T(x,t_0) = \begin{cases} T_l(x,0) & x \in \Omega_l \\ T_s(x,0) & x \in \Omega_s \end{cases}$$
(2)

$$T(t)|_{\partial\Omega} = T_g \tag{3}$$

$$T_l|_{\Gamma_{int}} = T_l|_{\Gamma_{int}} = T_{transf} \tag{4}$$

$$\rho v_n L = \left(K_l \frac{\partial T_l}{\partial n} - K_s \frac{\partial T_s}{\partial n} \right) \Big|_{\Gamma_{int}}$$
(5)

Здесь $\rho_l, \rho_s, c_l, c_s, K_l, K_s$ - плотность, теплоемкость и теплопроводность жидкой и твердой фаз соответственно, Γ_{int} - граница раздела фаз, L - скрытая теплота фазового перехода, T_{transf} - температура фазового перехода. Предполагается, что плотности фаз не слишком отличаются друг от друга, в противном случае модель будет не точна из-за того, что скачок плотности при фазовом переходе вызывает конвективные течения [2]. Условие изотермичности (4) задает температуру на границе раздела фаз равной температуре фазового перехода, условие (5) (условие Стефана) - поглощение или выделение энергии при фазовом переходе. В условии Стефана n - вектор нормали к границе Γ_{int}, v_n обозначает нормальную компоненту скорости фронта.

Для задачи (1) - (5), заданной в одномерной полубесконечной области, существует аналитическое решение (6) - (7): [3]

$$T(x,t) = \begin{cases} -\frac{T_l \operatorname{erfc}\left(\frac{\alpha}{\sqrt{k_l}}\right)}{2 - \operatorname{erfc}\left(\frac{\alpha}{\sqrt{k_l}}\right)} + \frac{T_l \operatorname{erfc}\left(\frac{x - \xi(t_0)}{2\sqrt{k_l t}}\right)}{2 - \operatorname{erfc}\left(\frac{\alpha}{\sqrt{k_l}}\right)}, & x < \xi(t), \\ T_s - \frac{T_s \operatorname{erfc}\left(\frac{x - \xi(t_0)}{2\sqrt{k_s t}}\right)}{2 - \operatorname{erfc}\left(\frac{\alpha}{\sqrt{k_l}}\right)}, & x \ge \xi(t), \end{cases}$$
(6)

$$\xi(t) = \xi(t_0) + 2\alpha\sqrt{t},\tag{7}$$

где $k_i = \frac{K_i}{\rho_i c_i}, i = \{l, s\}, \alpha$ определяется как решение уравнения (8):

$$\alpha = \frac{\sqrt{k_s}}{\sqrt{\pi L}} \frac{T_s}{\operatorname{erfc}\left(\frac{\alpha}{\sqrt{k_s}}\right)} e^{-\frac{\alpha^2}{k_s}} + \frac{\sqrt{k_l}}{\sqrt{\pi L}} \frac{T_l}{2 - \operatorname{erfc}\left(\frac{\alpha}{\sqrt{k_l}}\right)} e^{-\frac{\alpha^2}{k_l}}$$
(8)

1.2 Разрывный метод Галеркина

В качестве метода решения был выбран разрывный метод Галеркина. Основной его идеей является поиск решения в пространстве $L^2(\Omega)$ вместо $H^1(\Omega)$, как в классическом МКЭ. Как следствие, становится возможным использование разрывных базисных функций, что упрощает работу с несогласованными сетками, в том числе содержащими элементы разных форм, и реализацию hp-стратегии. Для учета требований гладкости решения используются особые операторы, входящие в вариационную постановку (так называемые численные потоки). Вывод вариационной постановки разрывного метода Галеркина для эллиптической краевой задачи подробно описан в [4], здесь же будет приведена уже готовая формулировка NIPG-метода, модифицированная для параболического уравнения. Для начала, введем разбиение $\tau_h = \{K_i\}$ области Ω на элементы $K_i, \bigcup_{i=1}^m K_i = \Omega$. Определим два пространства:

$$V = \{ v \in L^{2}(\Omega) : v|_{K} \in P(K) \},$$
(9)

$$\Xi = \{ \tau \in [L^2(\Omega)]^n : \tau |_K \in \Xi(K) \},$$
(10)

где $P(K), \Xi(K)$ - пространства скалярных и векторных функций соответственно, определенных на элементе K, n - размерность области Ω . Теперь введем численные потоки \hat{u} и $\hat{\sigma}$:

$$\widehat{u}: H^1(K) \to \prod_{K \in \Omega} L^2(\partial K)$$
 (11)

$$\widehat{\sigma} : [H^1(K)]^n \to \left[\prod_{K \in \Omega} L^2(\partial K)\right]^n.$$
 (12)

Конкретный вид численных потоков зависит от постановки метода и будет определен далее.

Теперь введем операторы скачка и среднего [4]. Пусть e - внутреннее ребро, разделяющее элементы K^+ и K^- , и пусть n^+, n^- - внешние нормали, соответствующие данным элементам. Тогда для $\phi \in V, \tau \in \Xi$:

$$\{\phi\} = \frac{\phi^+ + \phi^-}{2}$$

$$[\phi] = \phi^+ n^+ + \phi^- n^-$$

$$\{\tau\} = \frac{\tau^+ + \tau^-}{2}$$

$$[\tau] = \phi^+ \cdot n^+ + \phi^- \cdot n^-$$

Прежде чем записать вариационную постановку для уравнения вида (1), необходимо воспользоваться какой-либо схемой дискретизации по времени, например, двуслойной неявной схемой. Тогда можно переписать (1) как:

$$\rho_i c_i \frac{T^{(n+1)}}{\Delta h} - div \left(K_i \dot{g} rad \left(T^{(n+1)} \right) \right) = \rho_i c_i \frac{T^{(n)}}{\Delta h}, i = \{l, s\},$$
(13)

где $T^{(n+1)}, T^{(n)}$ обозначают решение на n+1 и n временном слоях соответственно, Δh - шаг по времени. Теперь все готово для записи вариационной постановки разрывного метода Галеркина, как она приводится в [4]: найти такую функцию $T \in V$, что $\forall v \in V$ выполняется равенство:

$$\int_{\Omega} \rho_{i} c_{i} \frac{T^{(n+1)}}{\Delta h} \cdot v d\Omega + \int_{\Omega} K_{i} \bigtriangledown T^{(n+1)} \cdot \bigtriangledown v d\Omega + \\
+ \int_{\Gamma} \left([\widehat{u} - T^{(n+1)}] \{ K_{i} \cdot \bigtriangledown v \} - \{\widehat{\sigma}\} \cdot [v] \right) ds + \\
+ \int_{\Gamma_{0}} \left(\{ \widehat{u} - T^{(n+1)} \} [K_{i} \cdot \bigtriangledown v] - [\widehat{\sigma}] \cdot \{v\} \right) ds = \int_{\Omega} \rho_{i} c_{i} \frac{T^{(n)}}{\Delta h} \cdot v d\Omega$$
(14)

Здесь Γ - множество границ элементов, включая внутренние, $\Gamma_0 = \Gamma/\partial \Omega$.

Для окончательного определения вариационной постановки необходимо задать вид численных потоков \hat{u} и $\hat{\sigma}$. Было решено использовать численные потоки, соответствующие методу NIPG [4]:

$$\widehat{u} = \{T\} + n_K \cdot [T]$$

$$\widehat{\sigma} = \begin{cases} \left\{ \nabla T^{(n+1)} \right\} - a_j \left([T^{(n+1)}] \right) & \text{Ha } \Gamma \\ \nabla T^{(n+1)} - a_j \left([T^{(n+1)}] \right) & \text{Ha } \Gamma_{jump} \end{cases}$$

где Γ_{jump} обозначает границу, на которой задан скачок потока, оператор $a(\phi) = \frac{mu}{h}\phi$, μ - некоторая константа. Тогда окончательная вариационная постановка примет вид: найти такую функцию $T \in V$, что $\forall v \in V$ выполняется равенство

$$\int_{\Omega} \rho_i c_i \frac{T^{(n+1)}}{\Delta h} \cdot v d\Omega + \int_{\Omega} K_i \bigtriangledown T^{(n+1)} \cdot \bigtriangledown v d\Omega +$$

$$+ \int_{\Gamma} \left([\widehat{u} - T^{(n+1)}] \{ K_i \cdot \bigtriangledown v \} - \{ K_i \cdot \bigtriangledown T^{(n+1)} \} \cdot [v] \right) ds +$$

$$+ \frac{\mu}{h} \int_{\Gamma_0} \left([T^{(n+1)}] \cdot [v] \right) ds = \int_{\Omega} \rho_i c_i \frac{T^{(n)}}{\Delta h} \cdot v d\Omega$$
(15)

В формуле (15) слагаемое $\frac{\mu}{h} \int_{\Gamma_0} ([T] \cdot [v]) ds$ выполняет роль стабилизатора, то есть улучшает характеристики схемы, в частности, точность получаемого решения [5].

1.3 Несогласованные сетки

Разрывный метод Галеркина позволяет довольно просто учитывать неконформность элементов. Действительно, непрерывность решения здесь обеспечивается слагаемым $\int_{\Gamma} \left([\hat{u} - T^{(n+1)}] \{ K_i \cdot \nabla v \} - \{ K_i \cdot \nabla T^{(n+1)} \} \cdot [v] \right) ds$, в то время как от базисных функций согласованность не требуется. Мы будем рассматривать несогласованные сетки, элементы которых не накладываются друг на друга, тогда неконформность будет связана только с «висячими узлами». Можно воспользоваться аддитивностью криволинейного интеграла и представить ребра, содержащие висячие узлы, в виде объединения ребер, образованных вершинами исходного ребра и висячими узлами (условимся называть их «атомарными ребрами»), как представлено на рисунке 1.

При условии, что все ребра сетки атомарные, разрывный метод Галеркина не требует модификации для работы с неконформными элементами. Таким образом, необходим алгоритм построения множества «атомарных ребер» из множества ребер исходной сетки. Такой алгоритм был

Рис. 1: Пример разбиения на «атомарные ребра»

построен автором работы и заключается в поиске ребер, содержащих «висячие узлы», и разбиению их на два новых ребра. Можно показать, что итогом работы данного алгоритма и будет множество «атомарных ребер». Для быстрого поиска ребра, содержащего требуемую вершину, на элементы исходной сетки накладывается прямоугольная сетка. Более подробно алгоритм изложен ниже.

Алгоритм построения множества атомарных ребер Исходные данные: множество элементов R, множество ребер E.

- 1. Наложить на область Ω прямоугольную сетку Rq.
- 2. Для каждого ребра $e \in E$:
 - (а) найти прямоугольник r_{LL} такой, что начальная точка (x_0, y_0) ребра *е* принадлежит r_{LL} ;
 - (b) найти прямоугольник r_{UR} такой, что конечная точка (x_1, y_1) ребра *е* принадлежит r_{UR} ;
 - (c) для всех прямоугольников в области между r_{LL} и r_{UR} отметить ребро e как пересекающее данные прямоугольники.
- 3. Для каждой вершины $p = (x_p, y_p)$ сетки R:
 - (а) найти прямоугольник r_p , содержащий вершину p;
 - (b) для всех ребер e, пересекающих r_p , если $p \in e$, и p не является вершиной e, тогда:
 - і. разбить е на ребра $e_1 = [(x_0, y_0), (x_p, y_p)]$ и $e_2 = [(x_p, y_p), (x_1, y_1)];$
 - іі. отметить все элементы $K \in R, p \in K$ как возможных владельцев e_1 и e_2 ;
 - і
іі. исключить из множества ребер E ребр
оe, включить в него $e_1, e_2;$

- iv. Для e_1, e_2 :
 - А. найти прямоугольник r_{LL} такой, что начальная точка (x_0, y_0) ребра *е* принадлежит r_{LL} ;
 - В. найти прямоугольник r_{UR} такой, что конечная точка (x_1, y_1) ребра *е* принадлежит r_{UR} ;
 - С. для всех прямоугольников в области между r_{LL} и r_{UR} отметить ребро e как пересекающее данные прямоугольники.
- 4. Для каждого ребра $e \in E$ и для каждого элемента $K \in R$, отмеченного как владелец e, если $e \notin K$, то исключить K из владельцев e.
- 5. Множество Е состоит из атомарных ребер.

2 Алгоритм нахождения позиции фронта

Для определения позиции фронта на каждом временном слое был выбран алгоритм, основанный на методе проб (trial method) [6]. Это итеративный метод, основанный на использовании одного из условий (4)-(5) для решения задачи (1)-(3), в то время как оставшееся условие используется для контроля правильности нахождения позиции фронта и ее обновления в случае необходимости. Преимуществом такого алгоритма является его понятность, а так же отсутствие привязки к конкретному виду задачи Стефана, как в методе энтальпии, или необходимость введения дополнительных уравнений, как в методе фазового поля. Недостаток метода заключается в том, что отслеживать движение фронта необходимо явным образом, что может создать трудности в случае сложной геометрии.

Какое из условий (4)-(5) выбрать для решения, а какое для контроля - вопрос, оставляемый на усмотрение исследователя, традиционно в качестве условия решения используется (4), условия контроля - (5) [7]. Отметим, что при использовании такого выбора необходимо контролировать, что метод решения не требует непрерывности потока на границе интерфейса Γ_{int} . В частности, для разрывного метода Галеркина исключаются слагаемые, отвечающие за ребра $e \in \Gamma_{int}$, а классический метод конечных элементов требует независимого решения задачи (1)-(3) в подобластях Ω_l и Ω_s .

Рис. 2: Аналитическое решение, задача вода - лед. t = 20 с.

3 Несогласованная адаптивная сетка

Для построения несогласованной адаптивной сетки можно воспользоваться тем фактом, что решение сильно меняется только в области, близкой к фронту, и слабо в областях, далеких от границы раздела фаз (см. рисунок 2).

В работе использовался следующий способ. Сначала строилась так называемая базовая сетка с равномерными, достаточно крупными элементами. Затем каждый раз, когда было необходимо перестроить триангуляцию из-за изменения позиции фронта, на базовую сетку накладывалась линия, соответствующая позиции интерфейса (рисунок 3), и отмечались все элементы сетки, лежащие на расстоянии Δ от этой линии (рисунок 4). Затем внешние ребра отмеченных элементов (то есть ребра, лежащие на границе области либо разделяемые одновременно отмеченным и неотмеченным элементами), объединялись в множество «внешних ребер» и определялось количество замкнутых контуров, образуемых «внешними ребрами». В работе рассматривалась возможность наличия одного (интерфейс - незамкнутая линия) или двух (интерфейс представляет собой замкнутую линию) контуров. В случае одного контура, триангулировалась область внутри него, в случае двух - область между ними. Полученная мелкая сетка накладывалась на место отмеченных элементов, а те, соответственно, удалялись (рисунок 5).

Полученная несогласованная сетка использовалась для решения задачи (1)-(3).

Рис. 3: Базовая сетка с наложенной линией интерфейса.

Рис. 4: Отмеченные элементы в области вокруг интерфейса

Рис. 5: Итоговая несогласованная сетка

4 Численные эксперименты

4.1 Верификация

Для верификации разрывного метода Галеркина использовалась двумерная эллиптическая задача, заданная в области, для которой выполнена несогласованная триангуляция (рисунок 6). Проверялась скорость работы алгоритма построения множества «атомарных ребер» в сравнении с алгоритмом, основанном на полном переборе, и правильность получаемого решения. Использовались квадратичные базисные функции, $\mu = 100$. Результаты приведены в таблицах 1 и 2. Как видно, предложенный алгоритм работает существенно быстрее, чем алгоритм на основе полного перебора, и имеет порядок сложности, близкий к $O(n \cdot \ln(n))$. Кроме того, несогласованность сетки практически не влияет на порядок сходимости разрывного метода Галеркина.

4.2 Одномерная задача Стефана

Для определения влияния выбора контролирующего условия на алгоритм метода проб было проведено исследование на одномерной зада-

Рис. 6: Тестовая несогласованная сетка

Количество	Отношение	Полный перебор		Быстрый алгоритм	
элементов		Время,	Отношение	Время,	Отношение
		MC.		MC.	
90		52		23	
219	2,433333	297	5,711538	41	1,782609
360	1,643836	833	2,804714	99	2,414634
3696	10,26667	99833	119,8475	1574	15,89899

Таблица 2: Порядок аппроксимации (квадратичный базис)

	Исходная сетка	Вложенная сетка	Порядок аппроксимации
x^2+y^2	1,32E-10	4,66E-09	
exp(x+y)	1,03E-03	2,07E-04	2,310264
x^3-y^3	2,23E-03	4,68E-04	2,25273

че «лед-вода». В качестве значения коэффициентов были заданы $K_l = 0.56 \frac{\text{BT}}{\text{M}\cdot\text{K}}, \rho_l = 1000 \text{кг/m}^3, c_l = 4200 \frac{\text{Дж}}{\text{кг}\cdot\text{K}}, K_s = 2.2 \frac{\text{BT}}{\text{M}\cdot\text{K}}, \rho_s = 916.7 \text{кг/m}^3, c_s = 2100 \frac{\text{Дж}}{\text{кг}\cdot\text{K}}, L = 330000 \text{ Дж}.$ Коэффициент $\alpha = 4.32362 \cdot 10^{-6}$ Расчетная область приведена на рисунке 7.

Рис. 7: Расчетная область

Алгоритм с контролирующим условием Стефана оказался достаточно устойчив. Решение, полученное с его помощью (рисунок 8), хотя и не совпадает с аналитическим, но погрешность не превышает 10^{-4} . Не следует забывать, что аналитическое решение верно только для полубесконечной области, когда плотности твердой и жидкой фаз совпадают. Алгоритм с контролирующим условием изотермичности не смог сойтись к решению, поскольку на первой итерации возникло нефизичное решение из-за требования скачка потока порядка 10^5 . Таким образом, традиция выбора функций условий (4)-(5) оправдана. Для двумерного теста был выбран алгоритм с контролирующим условием Стефана.

Рис. 8: Решение, получаемое алгоритмом с контролирующим условием Стефана

4.3 Двумерная задача Стефана

Решение двумерной задачи Стефана так же проверялось на задаче «ледвода» в прямоугольной области с фронтом, параллельным оси *Oy* (рисунок 9). Значения начальных условий аналогичны одномерному случаю. На левой и правой границах были установлены первые краевые условия со значениями, равными начальным температурам жидкой и твердой фаз соответственно, на верхней и нижней – однородные вторые краевые условия. Для триангуляции и перетриангуляции области использовалась программа gmsh версии 2.3.1, запускаемая в консольном режиме из основной программы.

Рис. 9: Расчетная область в двумерном случае

Решения в	Время t, <u>c</u> ,			
точках	10	20	30	40
Аналитическое	0,200027	0,200039	0,200047	0,200055
Одномерное	0,200142	0,200202	0,200247	0,200285
0,05	0,200102	0,200194	0,200227	0,200237
0,1	0,200090	0,200161	0,200219	0,200283
0,15	0,200072	0,200139	0,200186	0,200271

Таблица 3: Решение двумерной задачи Стефана

Результаты решения и их сравнение с одномерным случаем и аналитическим решением приведены в таблице 3. Полученные для двумерного случая позиции фронта в зависимости от времени близки к таковым для одномерного случая, хотя и больше, чем предсказывает аналитическое решение, которое, однако, не совсем справедливо в данном случае. Следует отметить небольшой «перекос» в положении фронта: его позиция в сечении 0,05 отстоит дальше от начала области, чем в сечении 0,1; аналогично и для сечений 0,1 и 0,15. Это может быть вызвано неточностью определения нормалей к границе в данных точках. Так как алгоритм оперирует только нормальными компонентами скорости, любая погрешность в определении нормали может вызвать отклонения позиции фронта от истинной позиции. Тем не менее, такие отклонения не слишком велики (порядка $2 - 5 \cdot 10^{-5}$ м), что можно считать вполне допустимым.

Заключение

Одна из проблем, возникающих при решении задачи Стефана - необходимость адаптации сетки к новому положению фронта. Вычислительные затраты на этот этап возможно снизить, если использовать несогласованную адаптивную сетку. В настоящей работе был предложен способ построения таких сеток для задачи Стефана и реализован метод решения эллиптических и параболических уравнений на подобных сетках на основе разрывного метода Галеркина. Проведенные тесты показали работоспособность такого подхода. Порядок сходимости разрывного метода Галеркина на несогласованной сетке для квадратичных базисных функций близок к 2.5, что подтверждает теоретическое значение.

Так же в ходе вычислительных экспериментов по решению одномерной и двумерной задач Стефана было показано, что алгоритм определения позиции фронта на основе метода проб (trial method) работоспособен в случае выбора условия Стефана в качестве контролирующего, в то время как в противном случае может привести к возникновению нефизичного решения. В двумерном случае так же возникают проблемы, связанные с точностью определения нормальных компонент скорости движения фронта и поточечного построения новой границы раздела фаз. В дальнейшем предполагается исследовать работу алгоритма в многомерном случае в сочетании с методом уровня (level set method) [3], который теоретически способен устранить указанную проблему.

Список литературы

- Elliott C. Weak and variational methods for moving boundary problems. Boston: Pitman Pub., 1982
- [2] Данилюк И.И. О задаче Стефана // Успехи математических наук. 1985. Т. 40, № 5 (245). С. 133–185.
- [3] Javierre E. и др. A comparison of numerical models for one-dimensional Stefan problems // Journal of Computational and Applied Mathematics. 2006. T. 192, № 2. C. 445–459.
- [4] Arnold D.N. и др. Unified analysis of discontinuous Galerkin methods for elliptic problems // SIAM journal on numerical analysis. 2002. Т. 39, № 5. С. 1749–1779.
- [5] Brezzi F. и др. Stabilization mechanisms in discontinuous Galerkin finite element methods // Computer methods in applied mechanics and engineering. 2006. T. 195, № 25-28. C. 3293–3310.
- [6] Donaldson R.D. Generalised Stefan problems: linear analysis and computation. The University of British Columbia, 2001.
- [7] Crank J. Free and moving boundary problems. Oxford University Press, 1987. 438 c.