
Development of the Computer Language Classification
Knowledge Portal

Nikolay Shilov, Renat Idrisov, Aleksandr Akinin, Aleksey Zubkov

Nikolay Shilov
A. P. Ershov Institute of Informatics Systems
Lavrentev av. 6, Novosibirsk 630090, Russia
shilov@iis.nsk.su

Renat Idrisov
Novosibirsk State University, Kaptug av. 2, Novosibirsk 630090, Russia
ren@ngs.ru

Aleksandr Akinin
Novosibirsk State University, Kaptug av. 2, Novosibirsk 630090, Russia
akinin3113@gmail.com

Aleksey Zubkov
Novosibirsk State University, Kaptug av. 2, Novosibirsk 630090, Russia
ortoslon@gmail.com

Abstract

During the semicentennial history of Computer Science and Information
Technologies, several thousands of computer languages have been created. The
computer language universe includes languages for different purposes:
programming languages, specification languages, modeling languages,
languages for knowledge representation, etc. In each of these branches of
computer languages it is possible to track several approaches (imperative,
declarative, object-oriented, etc.), disciplines of processing (sequential, non-
deterministic, parallel, distributed, etc.), and formalized models (from Turing
machines up to logic inference machines). Computer language paradigms are
the basis for classification of the computer languages. They are based on joint
attributes, which allow us to differentiate branches in the computer language
universe. Currently the number of essentially different paradigms is close to
several dozens. The study and precise specification of computer language
paradigms (including new ones) are called to improve the choice of appropriate

mailto:akinin3113@gmail.com
mailto:ortoslon@gmail.com
mailto:ren@ngs.ru
mailto:shilov@iis.nsk.su

computer languages for new Software projects and information technologies.
This position paper presents an approach to computer languages
paradigmatization (i.e. paradigm specification) and classification that is based
on the unified approach to formal semantics, and an open ontology (wiki-
styled) for pragmatics, formal syntax and informal “style”.

1 The Problem of Computer Language Classification
We understand by a computer language any language that is designed or used for automatic
"information processing", i.e. data (including process) representation, handling and management. A
classification of some universe (the universe of computer languages in particular) consists in means for
class(es) identification, separation and navigation.
During the semicentennial history of development of programming and information technologies,
several thousands of computer languages have been created1. Due to the number of the existing
computer languages alone, there is a necessity for their systematization or, more precisely, for their
classification. At the same time, classification of already developed and new computer languages is a
very important problem for computer science, since it could benefit software engineering and
information technology by a sound framework for computer language choice for components of new
program and information systems.

At the initial stage of programming and information technology history (years 1950-65), it was possible
to classify computer languages chronologically with annotations à la Herodotus' "History", i.e.
including lists of authors, their intentions, personal stories, etc. (Refer to [11] for a story of this kind.)
The matter is that at the first stage all (almost) computer languages were languages of imperative
programming for von Neumann's computers.

But since the late 1960-s the approach in style of the "Father of History" became unacceptable. Since
this time the variety of computer languages included not only programming languages, but also
specification languages, data representation languages, etc. Some of these branches since the late 1960-
s include not only imperative, but also declarative languages (functional in particular).

Between the middle of 1970-s and the early 1980-s, new approaches to computer language design
appeared (logical and object-oriented for example). Drawing an analogy between Computer Science
and other sciences, we could say that since late 60s, the classification of computer languages could be
done either in "Linnaeus style" (i.e. a taxonomy like: Kingdom - Phylum - Class - Order - Family -
Subfamily - Genus - Species) or in "Mendeleyev style" (i.e. as a chemical periodic table where the

1The History of Programming Languages poster by O’REILLY
 (http://www.oreilly.com/news/graphics/prog_lang_poster.pdf) is well known. The full-scale version of the
poster is about 6 m long and contains 2500 entries. The chronology is represented by the temporal axis placed at the top of
the poster, version history of individual languages are shown with colored lines, and the influences of programming
languages are depicted by weak grey lines. Please refer Appendix B for scaled copy of the poster and zoomed fragment of
it.

http://www.oreilly.com/news/graphics/prog_lang_poster.pdf

rows represent periods, and the columns represent groups). For example, look at2 Taxonomic system for
computer languages at http://hopl.murdoch.edu.au/taxonomy.html.

However, the 1990-s and the beginning of a new millennium became the time of rapid growth of
existing and new branches of computer languages. For example, knowledge representation languages,
languages for parallel/concurrent computing, languages for distributed and multi-agent systems, etc.
Each of these new computer languages has its own syntax (sometimes a very specific), a certain model
of information processing (i.e. semantics or a virtual machine), and its pragmatics (i.e. the sphere of
application and distribution). And though there were rather small groups of computer languages (e.g.,
Hardware Description Languages), many groups have been already "crowded" (e.g., Specification
Languages) and some of them went through the period of explosion and migration (e.g., Markup
Languages). Sometimes computer language "Gurus" have difficulties in putting some languages into
the one definite paradigm3 or to any paradigm (e.g. Language of Temporal Ordering Specification
LOTOS, Business Process Modeling Notation BPMN). Rapid generation of new computer languages
will continue while new spheres of human activities will be computerized. Thereby the situation in
computer languages radically differs from that of the natural sciences: in biology or chemistry the
situation is much more static, while in computer languages the situation is rather dynamic. Due to these
arguments alone, the natural sciences analogies cannot be adequately applied to the classification of
computer languages.

We define paradigms of computer languages as specifications of alternative approaches to information
processing, accumulated and fixed in the form of computer languages. Computer language paradigms
should base on joint attributes, which allow us to differentiate classes in the computer language
universe. Paradigmatization is an approach to the specification of paradigms.

Let us remark that Robert Floyd was the first who had explicitly used the concept of "paradigm" in
Computer Science, but in a different context and with another meaning. He discussed "paradigms of
Programming" in his Turing Award Lecture in 1978 [5]. Floyd referred to Thomas Kuhn's well-known
book [7], published just 8 years before. According to T. Kuhn, a paradigm is a method, an approach to
the formulation of problems and the ways to solve them. R. Floyd had a similar understanding of
programming paradigms. In particular, he wrote: "To the designer of programming languages, I say:
unless you can support the paradigms I use when I program, or at least support my extending your
language into one that does support my programming methods, I don't need your shiny new languages"
[5]. Currently, the number of essentially different paradigms of programming is already several dozens
(see, for example, the list of "programming paradigms" at [13]).

2Please refer Appendix C for scaled copy of the poster and zoomed fragment of it.
3 For example, programming language Ruby. “Its creator, Yukihiro “matz”, blended parts of his favorite languages (Perl,
Smalltalk, Eiffel, Ada, and Lisp) to form a new language that balanced functional programming with imperative
programming” (http://www.ruby-lang.org/en/about/).

2 Introducing Syntactic-Semantic-Pragmatic View (approach)
For natural and artificial languages (including computer languages), the terms "syntax", "semantics"
and "pragmatics" are used to categorize descriptions of language characteristics. Syntax is the
orthography of the language. The meaning of syntactically-correct constructs is provided through
language semantics. Pragmatics is the practice of use of meaningful syntactically-correct constructs.
Therefore the approach based on "specific features" of syntax, semantics and pragmatics, could be
natural for the specification of paradigms and the classification of computer languages.

The syntactic aspect of computer language classification should take into account formal syntax as well
as the human perspective. Certainly, it is very important for the compiler implementation whether a
particular language has regular, context-free or context-sensitive syntax. Thus formal characteristics of
computer languages could be attributes for their classification. These attributes can be brought from
formal language theory in accordance with Chomsky hierarchy or any other formal classification of
formal languages. But the classification based on formal syntax has lost its original value by virtue of
development of effective and powerful parsers. In contrast, informal annotations (attributes or
characteristics) like "flexibility", "naturalness", "style" (supported by a library of good-style examples),
"understandability" from a human standpoint (including a portion of "syntactic sugar") become much
more important.

The role of formal semantics for the classification of computer languages is also well known. The
major problem with semantics of computer languages is different formalisms and different level of
formalization that is adopted for particular computer languages. In programming languages, for
example,
• functional language LISP is based on very precise denotational semantics in terms of -calculus,
• the structured subset of a high-level imperative language Pascal has operational and axiomatic

semantics [6],
• but formal semantics for imperative languages of C-family is still a research challenge [9, 10].
This difference makes it extremely hard to compare semantics of different computer languages.
Nevertheless, we believe that sound unification of approaches to semantics is essential for better
classification of computer languages and a proper paradigm definition. We think that the problem can
be solved by two-dimensional stratification of paradigmatic4 computer languages. Each of these
languages should be stratified into levels and layers.
• Level hierarchy is the human-friendly semantic (and partially syntactic) representation. It should

comprise 2-3 levels that could be called as elementary, basic, and full. Elementary level should be
an educational dialect of the language for the first time study of its basic concepts and features.
Basic level should be a subset for regular users of the language which requires skills and
experience. Full level is the language itself, it is for advanced and experienced users.

4 We discuss what is "paradigmatic computer language" in the next section. To be short, paradigmatic languages are the
most typical ones for a particular paradigm (class).

• Layer hierarchy is the formal-oriented semantic representation. It could comprise up to 3 layers for
basic level and (optionally) for other levels. These layers could be called kernel, intermediate and
complete. The kernel layer should have an virtual machine semantics and provide tools for the
implementation of the intermediate layer; the intermediate layer in turn should provide tools for the
complete layer. Implementation of intermediate layer should be of semantics-preserving
transformation. Please refer [9] for an example of 3-layer hierarchy for programming language C#.

In contrast to highly mathematical formal semantics, pragmatics relies upon highly informal expertise
and experience of people that are involved in the compute language life cycle (i.e. design,
implementation, promotion, usage and evolution). In other words, we need to formalize expert
"knowledge" (views) about computer languages, related concepts, and relations between computer
languages. It naturally leads to an idea to represent this knowledge about computer language
pragmatics as ontology.

"Ontology is the theory of objects and their ties. Ontology provides criteria for distinguishing various
types of objects (concrete and abstract, existent and non-existent, real and ideal, independent and
dependent) and their ties (relations, dependencies and predication)" [4]. Roughly speaking, an ontology
is a partial formalization of a "knowledge" about a particular problem domain (computer languages for
instance). This "knowledge" could be an empirical fact, a mathematical theorem, a personal belief, an
expert resolution, a shared viewpoint of a group.

The most popular computer language for ontology representation is Web Ontology Language OWL. It
provides an opportunity to use Description Logic (DL) reasoners for automatic consistency checking.
Consistency is very important for open evolving temporal ontology. Openness means that the ontology
is open for access and editing. Temporal means that the ontology change in time, admits temporal
queries and assertions, and that all entries of the ontology have time-stamp. Evolving means that the
ontology tracks all its changes. Wikipedia, the free encyclopedia [14], is a good example of open,
evolving, and temporal ontology.

3 Towards Open Temporal Evolving Ontology for Classification of Computer Languages
Formalization of expert knowledge for pragmatics of computer languages should be open evolving
temporal ontology that includes syntactic and semantic (formal and informal) knowledge in the form of
annotations and attributes.

Let us remark, that the History of Programming Languages poster by O'RELLY (see Appendix B)
already defines an ontology of programming languages in which the class differentiation and
navigation method is explicit enumeration of languages, "influence lines" and chronology. The same
holds for HOPL (History of Programming Languages at http://hopl.murdoch.edu.au/, see Appendix C).
This project represents historical and implementation information about an impressive number (8512)
of programming languages. Unfortunately HOPL is not open for editing, is not evolving since 2006,
and does not deal with any other inter-language relations than language–dialect–variant–

http://hopl.murdoch.edu.au/

implementation. Situation is different with the Progopedia the wiki-like encyclopedia of programming
languages (http://progopedia.ru/). It is open for editing, traces its history. But both HOPL and
Progopedia does not deal with programming paradigms, have restricted temporal navigation. While the
HOPL provides some taxonomy instruments, the Progopedia has only a trivial one (language–dialect–
variant–implementation). In comparison with HOPL and O'REILLY poster, Progopedia is relatively
small. At present it contains information about 51 language, 80 dialects, 187 implementations, and 485
versions. All these “ontologies” do not have means for constructing classes by users and support only
manual navigation among the classes. We believe, that a more comprehensive ontology could solve the
problem of computer languages classification, i.e. identification and separation of classes of computer
languages and navigation among them.

In the proposed ontology for computer languages, objects should be computer languages (including
their levels and layers also as objects), concepts/classes (in terms of DL/OWL) – collections of
computer languages that can be specified by concept terms (in DL), ties (DL-roles or OWL-properties)
– relations between computer languages. For example, Pascal, LISP, PROLOG, SDL, LOTOS,
BPMN, UMLT, as well as C, C-light and C-kernel, OWL-Lite, OWL-DL and OWL-full should be
objects of the ontology. Since we understand computer language paradigms as specifications of classes
of computer languages, and we consider classes of computer languages as DL-concepts/OWL-classes,
then we have to adopt DL concept terms as paradigms of computer languages. In these settings
computer language paradigms and classification will not be taxonomy trees based on property
inheritance from sup-class to sub-class. Objects (i.e. computer languages) of the proposed ontology
could be attached by different formal attributes (e.g., formal syntax properties) and informal
annotations (e.g., libraries of samples of good style).

Let us remark that the list of formal attributes and informal annotations is not fixed but open for
modifications and extensions. Nevertheless it makes sense to provide certain attributes and annotations
for all objects (e.g., an attribute "date of birth" with different time granularity, or annotation "URL of
external link" for references) but allow indefinite value for them. In contrast, some other attributes and
annotations will be very specific to objects. For example, "try" annotation with a link to easy to install
or web-based small implementation (that can be freeware or shareware) makes sense for elementary
levels or kernel layers.

We have already discussed a number of examples of concepts/classes in the proposed ontology: "has
context-free syntax", "functional languages", "specification languages", "executable languages", "static
typing", "dynamic binding", etc. (Other examples can be found at [17].) All listed examples should be
elementary DL-concepts/OWL-classes. All elementary DL-concepts/OWL-classes should be explicitly
annotated by appropriate attributes ("has context-free syntax", "is functional language", "is
specification language", etc.). Nonelementary concepts/classes should be specified by means that are
supported by OWL and DL (by standard set-theoretic operations "union" and "intersection" in
particular). For example, "executable specification languages" is the intersection of "executable
languages" and "specification languages". We have some doubts about "complement", since the

http://progopedia.ru/

proposed ontology will always be open-world ontology with incomplete information. For example, if a
language has no explicitly attached attribute "has context-free syntax", it does not mean that the
language has no CF-syntax. At present we adopt a temporary solution to use explicit positive (e.g., "has
context-free syntax", "is functional language", "is specification language", etc.) and negative attributes
(that are counterparts of positive one, e.g., "has NOT context-free syntax", "is NOT functional
language", "is NOT specification language", etc.) and use of positive DL concept terms for paradigm
specification (i.e. concept terms without complement).

But the proposed ontology should have a special elementary concept/class for "paradigmatic computer
languages" that comprises few (but one at least) representative for every elementary concept/class. Of
course, all elementary concepts/classes (including "paradigmatic languages") should be formatted on
base of expert knowledge and be open for editing. A special requirement for the proposed ontology
should be the following constraint: every legal ("well-formed") non-empty concept/class must contain a
paradigmatic language (one at least). A background intuition is straightforward: if expert can not point
out any representative example of a paradigm, then paradigm should be empty.

Roles/properties in the proposed ontology could be very natural also: "is dialect of", "is layer of", "uses
syntax of", etc. For example: "REAL is dialect of SDL", "C-light is layer of C", "OWL uses syntax of
XML". All listed examples are elementary DL-roles/OWL-properties. Standard (positive) relational
algebra operations "union", "intersection", "composition" and "transitive closure" can be used and are
meaningful for construction of new roles/properties. For example, "uses syntax of dialect of" is the
composition of "uses syntax of" and "is a dialect of": REAL [8] executional specifications "uses syntax
of dialect of" SDL [12]. Again we have some doubts about use of "complement" and "inverse" and,
maybe, we will adopt use of explicit complement and inverted for elementary DL-roles/OWL-
properties.

Let us remark that computer language domain has four domain-specific ties between languages: "is
dialect of", "is variant of", "is version of", and "is implementation of" [15]. Of course these ties must be
presented in the proposed ontology as elementary DL-roles/OWL-properties. But, unfortunately, there
is no consensus about definition of these ties. For example, some people [18] consider that an
implementation can have a version, while some other [17] have an opposite view that a version can
have an implementation. Detailed discussion of this issue is a topic for further research, but currently
we adopt the following definition. Dialects are languages with joint elementary level. Variants are
languages with joint basic level. Version line is linearly ordered collection of variants such that later
every earlier "version" is a compatible subsets of all later versions5. Implementation is platform-
dependent variant of a language.

5 Here "version" is any element of any version line? i.e. is defined with respect to a particular line. In principle, several
independent version lines can coexists. For example, it is possible to say that Object C and C++ are object-oriented variants
of C, but for sure these two languages launch different version lines.

Universal and existential quantifier restrictions that are used in OWL and DL for construction of new
classes/concepts also could get a natural and useful meaning. An example of existential restriction (in
DL notation): a concept  (uses syntax of : ((markup language)  {XML}) consists of all computer
languages that are markup languages but do not use syntax of Extensible Markup Language XML; an
example of a language of this kind is LaTeX. An example of universal restriction and terminological
sentence (in DL notation also) follows: a sentence XML:  (is dialect of) . ({ML}) expresses a fact that
XML is a dialect of any computer language but a functional programming "Meta Language" ML.

We would like to emphasize that a proposed ontology for pragmatics of computer languages should be
open evolving ontology. Openness of the ontology will be supported by wiki technology for editing.
Evolution will be supported by the automatic timestamping and history of all edits. Temporality will be
supported by temporal extensions of Description Logic for paradigm specification.

Recently we have started implementation of a prototype of a computer languages classification
knowledge portal that eventually (we hope) will evolve into Open Temporal Evolving Ontology for
Classification of Computer Languages (see Appendix A). We believe that it will provide Computer
Language researchers with a sound and easy to maintain and update framework for new language
design and language choice/selection tools for new Software engineers and Information Technology
managers.

References
[1] Anureev I.S. Ontological Transition Systems. Joint NCC&IIS Bulletin, Series Computer Science,

2007, v. 26. (Accepted for publication.)
[2] Baader F., Calvanese D., Nardi D., McGuinness D., and Patel-Schneider P., editors. The

Description Logic Handbook: Theory,Implementation and Applications. Cambridge University
Press, 2003.

[3] Borger E. and Stark R. Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer-Verlag, 2003.

[4] Corazzon R. Ontology. A Resource Guide for Philosophers. At http://www.formalontology.it/.
[5] Floyd R.W. The paradigms of Programming. Communications of ACM. v.22, 1979, p.455-460.
[6] Hoare, C.A.R. and Wirth N. An Axiomatic Definition of the Programming Language PASCAL.

Acta Informatica, 2, 1973, p.335-355.
[7] Kuhn T.S. The structure of Scientific Revolutions. Univ. of Chicago Press, 1970.
[8] Nepomniaschy V.A., Shilov N.V., Bodin E.V., Kozura V.E. Basic-REAL: integrated approach for

design, specification and verification of distributed systems. Springer Lecture Notes in Computer
Science, v.2335, 2002.

[9] Nepomniaschy V.A., Anureev I.S., Dubranovskii, I.V. Promsky A.V. Towards verification of C#
programs: A three-level approach. Programming and Computer Software. 2006, 32(4), p. 190-202.

[10] Norrish M. C formalised in HOL. PhD Thesis. University of Cambridge, Computer Laboratory,
Technical Report 453, 1998.

[11] Ritchie D.M. The development of the C language. ACM SIGPLAN Notices, v.28, n.3, 1993,
p.201-208.

[12] Turner K. J. (Editor) Using Formal Description Techniques: An Introduction to Estelle, LOTOS
and SDL. John Wiley and Sons, 1993

[13] Programming paradigm. From Wikipedia, the free encyclopedia. At
http://en.wikipedia.org/wiki/Programming paradigm.

[14] Wikipedia, the free encyclopedia. At http://en.wikipedia.org.
[15] Pigott D. HOPL: an interactive Roster of Programming Languages. 1995-2006. At

http://hopl.murdoch.edu.au/
[16] OWL Web Ontology Language Guide, W3C Recommendation, February 10, 2004. At

http://www.w3.org/TR/owl-guide/
[17] Kinnersley W. The Language List. At

http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm.
[18] Progopedia. Encyclopedia Yazykov Programmirovaniya. (In Russian) At http://progopedia.ru/.

Appendix A: a prototype of a computer languages classification knowledge portal
A prototype of a knowledge portal for computer languages classification has been designed for small-
scale experimentation purposes. So it does not support full functionality. The prototype is implemented
as a web application, so “experts” (i.e. members of the laboratory) can enter it with a web browser. The
interface allows users to observe and edit the information represented by the portal, which is formed as
an ontology.

The main elements of the ontology are computer languages (objects of the ontology), elementary
classes of languages (arbitrary, explicitly user-specified subsets of the set of objects), relations between
the languages (binary relations over the set of objects), attributes (mappings from the set of languages
to some external data types, e.g. text strings, URL's) and axioms (Description Logic statements).

Each of these types of entities form a list which can be viewed and modified directly by the user. The
pictures below illustrate this process.

http://progopedia.ru/
http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm

1. Example of list of ontology elements:

2. Example of query processing:

3. Example of data visualization:

The portal prototype also allows to visualize selected relations between languages. It draws a graph
where the vertices are computer languages marked by their names and the edges are the relations
between the languages marked by their color.

The data in the prototype is represented by an OWL-language database (RDF-repository). In future it
will allow us to use some OWL-oriented reasoning tool to perform the consistency control and process
the user queries.

The prototype is at the beginning stage of development now. It is planned to expand its functionality by
providing a more effective and reliable mechanisms to deal with big quantities of data elements and
users, to solve complex queries.

Appendix B: History of Programming Languages by O’REILLY
(http://www.oreilly.com/news/graphics/prog_lang_poster.pdf)

http://www.oreilly.com/news/graphics/prog_lang_poster.pdf

Appendix C: HOPL' taxonomic system for computer languages
(http://hopl.murdoch.edu.au/taxonomy.html).

http://hopl.murdoch.edu.au/taxonomy.html

