Computer Systems Laboratory
A.V. Rzhanov Institute of
Semiconductor Physics SB RAS
Lavrentiev ave., 13
630090, Novosibirsk, Russia
Tel. & Fax: +7 (383) 333 21 71

E-mail: khor@isp.nsc.ru

Computer Center for Parallel Technologies
Siberian State University of
Telecommunications and Informatics
Kirov str., 86
630102, Novosibirsk, Russia
Tel. & Fax: +7 (383) 269 82 75

E-mail: khor@sibsutis.ru

GEOGRAPHICALLY DISTRIBUTED COMPUTER SYSTEMS AND PARALLEL MULTIPROGRAMMING

Prof. Dr. Victor KHOROSHEVSKY
Corresponding Member of
Russian Academy of Sciences

DICR'2010

Novosibirsk, 30.11.- 03.12.2010

Лаборатория вычислительных систем Институт физики полупроводников им. А.В. Ржанова СО РАН пр-кт ак. Лаврентьева, 13 630090, Новосибирск, Россия Тел. & факс: +7 (383) 333 21 71

E-mail: khor@isp.nsc.ru

Центр параллельных вычислительных технологий Сибирский государственный университет телекоммуникаций и информатики ул. Кирова, 86 630102, Новосибирск, Россия Тел. & факс: +7 (383) 269 82 75

E-mail: khor@sibsutis.ru

В.Г. Хорошевский член-корреспондент Российской академии наук

ПРОСТРАНСТВЕННО-РАСПРЕДЕЛЕННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ И ПАРАЛЛЕЛЬНОЕ МУЛЬТИПРОГРАММИРОВАНИЕ

Распределенные информационные и вычислительные ресурсы

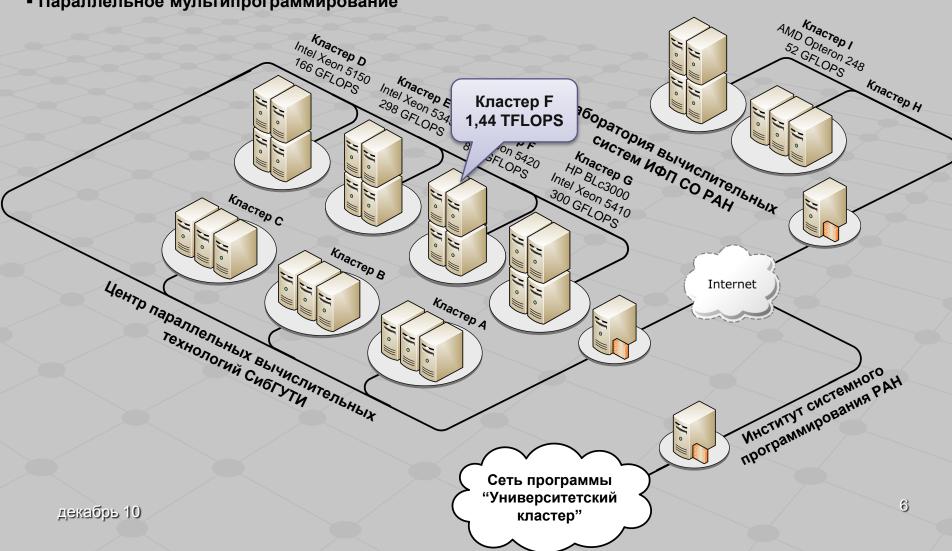
CONFERENCE TOPICS

- Multi-architecture of high-performance computer systems (CS)
- 2. Geographically distributed multicluster computer system
- 3. Parallel multiprogramming
 - Parallel program mapping
 - Moldable jobs scheduling
 - Game-theoretic model
 - Stochastic programming

МУЛЬТИАРХИТЕКТУРА СОВРЕМЕННЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Nº	Название системы	Производи- тельность, GFLOPS	Количество ядер	Вычислительный узел	Тип системы	Структура сети
	Jaguar Cray XT5-HE	2 331 000	224162	2 x AMD Opteron six-core	MPP	3 <i>D</i> -тор
2	Nebulae Dawning TC3600 Blade	2 984 300	120640	2 x Intel Xeon X56xx, Nvidia Tesla C2050	Кластер	Двухуровневая (fat tree)
3	RoadRunner IBM BladeCenter QS22/LS21	1 375 780	122400	2 x AMD Opteron dual core, 4 x IBM PowerXCell 8i	Мультикластер (18 кластеров)	Двухуровневая (fat tree)
4	Kraken XT5 Cray XT5-HE	1 028 850	98928	2 x AMD Opteron six-core	MPP	3 <i>D</i> -тор
5	JUGENE IBM BlueGene/P	1 002 700	294912	4 x IBM PowerPC 450	MPP	3 <i>D</i> -тор, бинарное дерево

МУЛЬТИАРХИТЕКТУРА СОВРЕМЕННЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ


Nº	Название системы	Производи- тельность, GFLOPS	Количество ядер	Вычислительный узел	Тип системы	Структура сети
1	Tianhe-1A NUDT YH MPP	4 701 000	186 368	2 x Intel Xeon X5670, NVidia M2050	Кластер	Двухуровневая (fat tree)
2	Jaguar Cray XT5-HE	2 331 000	224 162	2 x AMD Opteron six-core	MPP	3 <i>D</i> -тор
ω /	Nebulae Dawning TC3600 Blade	2 984 300	120 640	2 x Intel Xeon X56xx, NVidia Tesla C2050	Кластер	Двухуровневая (fat tree)
4	TSUBAME 2 HP ProLiant SL390s G7	2 287 630	73 278	2 x Intel Xeon X56xx, NVidia Tesla M2050/S1070	Кластер	Двухуровневая (fat tree)
5	Hopper Cray XE6	1 288 630	153 408	2 x AMD Opteron 12 core	MPP	3 <i>D</i> -тор

Пространственно-распределённая мультикластерная вычислительная система

GRID-модель

Парадигмы:

- •Программируемость структуры, масштабируемость, живучесть
- Параллельное мультипрограммирование

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ МУЛЬТИКЛАСТЕРНОЙ ВС

/даленный доступ и мониторині (SSH, Globus Toolkit; Ganglia)

Средства разработки параллельных программ

- MPI: TopoMPI, MPICH2, OpenMPI
- PGAS: Unified Parallel C
- OpenMP: GNU Compilers, Intel Compilers, Sun Studio Compilers
- Средств анализа MPI-программ: mpistat, otfstat, VampirTrace

WPT WPIC. H/ CINENWIPT

Средства организации распределенной очереди задач (**Gbroker, dqueued,** GridWay)

Подсистема параллельного мультипрограммирования (TORQUE, MAUI, mpiexec)

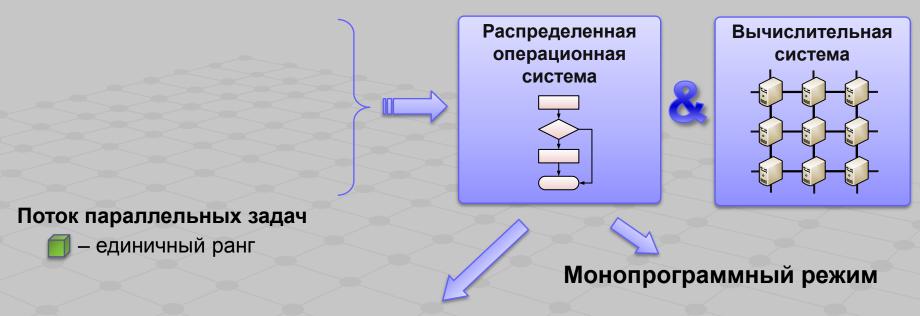
Подсистема самоконтроля, самодиагностики ВС и организации отказоустойчивого выполнения параллельных программ (DMTCP – Distributed MultiThreaded CheckPointing)

Операционная система GNU/Linux

Подсистема параллельного мультипрограммирования

Разрабатываемые в ЦПВТ ГОУ ВПО "СибГУТИ" компоненты

ПАРАЛЛЕЛЬНОЕ МУЛЬТИПРОГРАММИРОВАНИЕ


Режимы функционирования ВС

- Монопрограммный режим Решение одной сложной задачи, представленной параллельной программой Крупноблочное распараллеливание
- Мультипрограммные режимы
 - Обработка набора задач
 - Обслуживание потока задач

Первые работы

- В.Г. Хорошевский. Об алгоритмах распределения задач по ЭЦВМ // Труды СФТИ. Томск: ТГУ, 1965. Вып. 47
- Д.А. Поспелов. Теоретические проблемы, связанные объединением типовых вычислительных машин в единую систему // Вычислительные системы, труды симпозиума. Новосибирск: ИМ СО АН СССР. 1967.

ПАРАЛЛЕЛЬНОЕ МУЛЬТИПРОГРАММИРОВАНИЕ

Мультипрограммные режимы

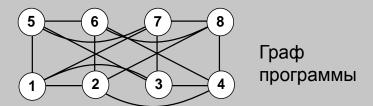
Обслуживание потоков задач

Генерация подсистем в пределах ВС

- Техника теории игр
- Стохастическое программирование

Обработка наборов задач

Формирование расписаний решения параллельных задач

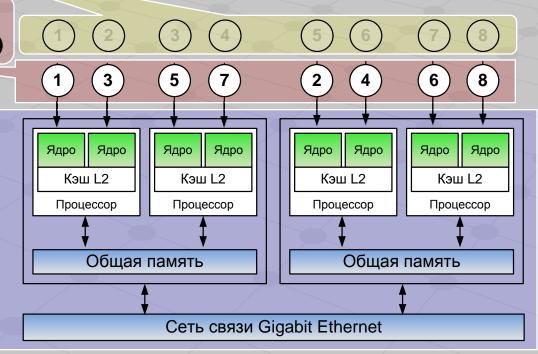


Точные, эвристические и стохастические методы и алгоритмы

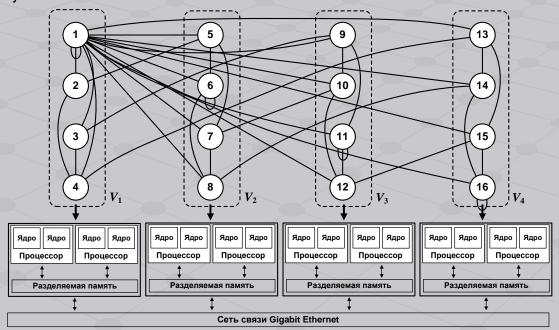
ВЛОЖЕНИЕ ПАРАЛЛЕЛЬНЫХ ПРОГРАММ В ВС

Вложение High Performance Linpack в подсистему:

стандартными MPI-утилитами – время выполнения **118 сек. (44 GFLOPS)**


High Performance Linpack

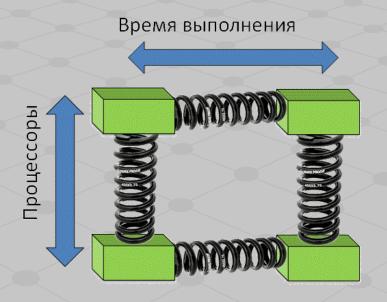
разработанными средствами – время выполнения **100 сек.** (53 GFLOPS)


2 узла по 2 Intel Xeon 5150

ВЛОЖЕНИЕ ПАРАЛЛЕЛЬНЫХ ПРОГРАММ В ВС

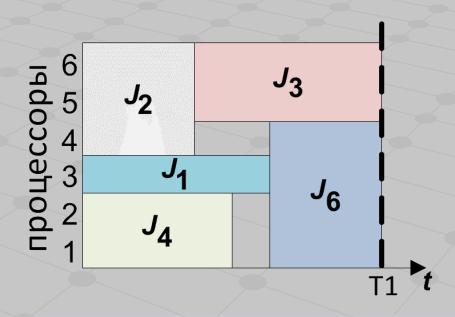
Метод вложения основан на многоуровневых (multilevel) алгоритмах разбиения информационных графов G = (V, E) параллельных программ.

- 1. Граф G разбивается на k подмножеств; k отношение числа L ветвей программы к числу q ядер, составляющих узел BC. В каждое из подмножеств включаются ветви, обменивающиеся большими объемами данных.
- 2. Параллельные ветви из i-го подмножества распределяются по ядрам i-го вычислительного узла, $i \in \{1, 2, ..., k\}$.



Вложение MPI-программы Conjugate Gradient из пакета NAS Parallel Benchmarks, реализующей решение системы линейных алгебраических уравнений методом сопряженных градиентов в вычислительный кластер: L=16; q=4; k=4

ФОРМИРОВАНИЕ РАСПИСАНИЙ РЕШЕНИЯ МАСШТАБИРУЕМЫХ ЗАДАЧ


Алгоритмы основаны на методе разбиения набора масштабируемых задач на пакеты и учитывают предпочтение пользователей по выбору значений параметров задач (ранг и время решения).

Масштабируемая задача

Свойством масштабируемости обладают более 80% задач, решаемых на вычислительных системах.

Расписание решения задач

(T2 – T1) – выигрыш по времени решения задач набора

ОРГАНИЗАЦИЯ СТОХАСТИЧЕСКИ ОПТИМАЛЬНОГО ФУНКЦИОНИРОВАНИЯ ВС Теоретико-игровой подход

1. Постановка проблемы. Поток задач с очередью.

Имеется:

- распределенная BC из N ЭМ;
- очереди задач всех рангов;
- операционная система (ОС) для распределения задач по машина ВС.

Задача ранга ј требует для своего решения подсистему из ј ЭМ.

2. Простейшая игровая модель. Игра двух объектов: ВС & ОС

і – чистая стратегия ВС; і машин выделяется для решения задач

ј – чистая стратегия ОС; выбирается задача ранга ј для решения на ВС

$$C = \left\| c_{ij}
ight\|$$
 - матрица платежей, $i,j \in \left\{ 0,\!1,\ldots,N
ight\}$

 c_{ii} – платеж при выборе стратегий i и j соответственно ВС и ОС

$$\pi = \left\{ \pi_0, \pi_1, \ldots, \pi_N
ight\}$$
 - смешанная стратегия ВС

$$p = \{p_0, p_1, \ldots, p_N\}$$
 - смешанная стратегия ОС

ОРГАНИЗАЦИЯ СТОХАСТИЧЕСКИ ОПТИМАЛЬНОГО ФУНКЦИОНИРОВАНИЯ ВС

Теоретико-игровой подход (продолжение)

3. Оптимальные смешанные стратегии

Средний платеж ВС -

$$\sum_{i=0}^N \sum_{j=0}^N c_{ij} p_i \pi_j = p^T C \pi,$$

если ВС и ОС используют смешанные стратегии P и π соответственно.

Существуют оптимальные смешанные стратегии p^* и π^* такие, что

$$p^T C \pi^* \le \nu$$
 для всех р, $(p^*)^T C \pi \ge \nu$ для всех π

Цена игры $\upsilon = (p^*)^T C \pi^*$

Элементы матрицы С:

$$c_{ij} = egin{cases} jc_1 + (i-j)c_2 & \text{для} & i \geq j, \\ ic_2 + (j-i)c_3 & \text{для} & i < j, \end{cases}$$

 c_1 - платеж за использование одной ЭМ в единицу времени, c_2 и c_3 - штрафы в единицу времени за простой одной ЭМ и при j – i = 1

Теорема. Матрица С не имеет седловых точек тогда и только тогда, когда

$$c_1 < \min\{c_2, c_3\}.$$

4. Параллельный алгоритм решения проблемы основывается на композиции симплекс-метода и модифицированного метода Брауна-Робинсон.

ОРГАНИЗАЦИЯ СТОХАСТИЧЕСКИ ОПТИМАЛЬНОГО ФУНКЦИОНИРОВАНИЯ РАСПРЕДЕЛЕННЫХ ВС

Техника стохастического программирования

1. Проблема организации подсистем

N - число ЭМ, образующих ВС

L - число терминалов, воспринимающих поток задач

 $a_{\it il}$ - число подсистем ранга $\it j$, которое требуется терминалу $\it l$

 $p_{\scriptscriptstyle jl}(a)$ - плотность распределения вероятностей случайной величины $a_{\scriptscriptstyle jl}$,

$$\int_{0}^{\infty} p_{jl}(a)da = 1, \qquad j \in \{1, 2, ..., N\}, \qquad l \in \{1, 2, ..., L\}$$

 $d_{\it il}$ - цена эксплуатации подсистемы ранга $\it j$ для терминала $\it l$

 $c_{\it jl}$ - стоимость формирования и обслуживания подсистемы ранга $\it j$ для терминала $\it l$

 ${\mathcal Y}_{il}$ - число подсистем ранга j , обязательно выделяемых терминалу l

 \boldsymbol{x}_{il} - число подсистем ранга j , дополнительно выделяемых терминалу l

ОРГАНИЗАЦИЯ СТОХАСТИЧЕСКИ ОПТИМАЛЬНОГО ФУНКЦИОНИРОВАНИЯ РАСПРЕДЕЛЕННЫХ ВС Техника стохастического программирования (продолжение)

Ожидаемая прибыль от эксплуатации подсистем ранга j с терминала l:

$$r_{jl}(x_{jl}) = (d_{jl} - c_{jl})(x_{jl} + y_{jl}) - d_{jl} \int_{0}^{x_{jl} + y_{jl}} (x_{jl} + y_{jl} - a) p_{jl}(a) da$$
 Проблема:

$$\sum_{j=1}^{n} \sum_{l=1}^{L} r_{jl}(x_{jl}) \to \max_{\{x_{jl}\}}; \quad j = \overline{1, n}; \quad l = \overline{1, L};$$

$$\sum_{j=1}^{n} \sum_{l=1}^{L} j x_{jl} \le n, \qquad n = N - \sum_{j=1}^{N} \sum_{l=1}^{L} j y_{jl},$$

где
$$x_{il}=0$$
 для $j=\overline{n+1,N}$

2. Параллельный алгоритм решения проблемы основывается на технике динамического программирования

ЗАКЛЮЧЕНИЕ

- Распределенная вычислительная система большемасштабный вероятностный объект, обслуживающий стохастические потоки параллельных задач
- Техника теории игр и стохастическое программирование составляют основу для организации стохастически оптимального использования ресурсов ВС
- Стохастическая оптимизация функционирования распределенных ВС осуществляется однократно для достаточно большого интервала времени
- Параллельные алгоритмы и теоретико-игровые, и стохастического программирования реализуются эффективно на распределенных ВС
- Нет сложных вычислительных проблем при создании распределенной операционной системы, поддерживающей параллельное мультипрограммирование
- Разработанный алгоритмический и программный инструментарий вложения параллельных программ в мультиархитектурные ВС эффективнее стандартных МРІ-утилит

декабрь 10

THANK YOU VERY MUCH

NOVOSIBIRSK, 30.11.-03.12.2010