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The digital wind tunnel is the worthy problem for 

scientific computing

• “Computational fluid dynamics has become a key 

technology in the development of new products in the 

aeronautical industry.” But up to now computational 

algorithms do not produce sufficiently accurate results 

which are needed for industry despite the great 

performance of computers.



The digital wind tunnel

The direct solving this Problem requires computers of huge 

performance. For example, to analyze sound effects. Sound 

speed equals 330 m/s, the upper bound of frequency is 20 

kHz with wave length 1.65 cm. To analyze sound 

propagation, one have to take the characteristic size of a 

grid (for approximation) at least 1/6 of wave length, i.e., 

0.275 cm and time step 8 · 10-6 s. One cubic meter contains 

1.75 · 108 cubes with such edge. But we need analyze tens 

103 cubic meter at least during 1 second of flying. Every cell 

takes 103-104 arithmetical operations for one time step but 

number of these steps is greater 1.25 · 105. Therefore it 

needs 1022 arithmetical operations. The performance of 

modern computers is 1015 Flop/s. It means 107 s, i.e., 116 

days with the best computer and coding for poor accuracy.



The digital wind tunnel

• The goal of Project “Tristam” is to develop and 

utilize innovative adaptive high-order computational 

methods for compressible flow equations for large-

scale aerodynamic applications in aircraft design.
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Project “Tristam”

• We suggest to develop the process of solving three-

dimensional aerodynamic problems, which consists

of three stages, may be performed and repeated in 

different places at corresponding computer systems 

and architectures with different required tasks and 

appropriate accuracy.



Input and Preliminary Solving

• The first stage "Input and Preliminary Solving" consists 

of formulation of geometry, storing data, and solving the 

Problem on the almost uniform grid coordinated with 

the surface of a body.

Nevertheless even at this initial stage we suggest new

numerical methods of fourth order of accuracy, which 

combine finite element method in space, finite 

difference method in time, and defect correction 

method to improve accuracy.



"The Prepack"

• The second stage "The Prepack" consists of three steps. 
First step analyzes the solution of first stage and finds 
out vicinities of possible problematic areas with greater 
gradients (shock and boundary layers, etc). 



• Estimator of order k:

where difference derivative of order k 
along some trajectory equals partial 

derivative of the same order in the 

direction of this trajectory

f := ρ, σu, σv, ρη

Temporal estimator

Fig. 2. Black line demonstrates 

trajectory with nodes of high-order 

differences.
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Adaptivity:

The greater | E | the less 

Temporal adaptivity

Fig. 2. Black line demonstrates 

trajectory with initial nodes for 

estimator.
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Spatial mean-value estimator

• Estimator of fourth order 

begins with matrix
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• Then we compute 3 real eigenvalues                  and 3 

eigenvectors                 of this matrix

• Comparison of absolute values with given spatial parameter 

gives the multiplier of mesh condensation 

in each direction 

• So we can get different situation 

subject to directions:

Spatial mean-value estimator
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"The Prepack"

• Second step modifies the triangulation: makes it 
condensed in the vicinity of problematic areas and more 
sparse in the areas of smooth behavior of the previous 
solution. The computational domain may be slightly 
reduced. 



Conforming finite elements

After condensation of meshes the transparent red elements have the 

same set of degrees of freedom as blue ones (only with other scale) 

except hatched meshes with incomplete set of degrees of freedom.



"The Prepack"

• At the third step the Problem is solved again on the 
modified triangulation and this solution is stored and 
used later as the “prepack” for many other tasks and 
other computers. For some Problems several 
iterations of the second stage may be repeated for 
better accuracy.



The Goal-Oriented Task-1: computing important 

parameters

• The third stage “The Goal-Oriented Task” also 

consists of three steps. Special task may means the 

calculation of one of the important parameters: drag, 

lift, moment coefficient, etc. At first, on the previous 

constructed (second) triangulation another Problem is 

solved which is adjoint to the previous linearized 

equations in the sense of corresponding cost 

functional. 



The Goal-Oriented Task-1: computing important 

parameters

• The solution of adjoint problem (as function of 

sensitivity for our functional) gives information for 

further reconstruction of triangulation.



The Goal-Oriented Task-1: computing important 

parameters

• At the third step the initial required Problem is 

solved at new (already the third) triangulation.



The Goal-Oriented Task-1: computing important 

parameters

• As a example look at this approach in stationary 

two-dimensional Navier-Stokes problem from paper 

by R. Hartmann in the framework of Project 

ADIGMA.



Initial triangulation

~ 3000 elements

~ 43000 degrees of freedom

accuracy 0.02 

for pressure drag

Second triangulation

~ 30000 elements

~ 560000 degrees of 

freedom

after second stage

accuracy 0.0016

Third triangulation

~ 35000 elements

~ 560000 degrees of freedom

after third stage

accuracy 2·10-5



The Goal-Oriented Task-2: implementation to 

other physical process

• After second stage one gets numerical solution of 

problem (pressure, velocity) with appropriate 

accuracy for other physical process. If these 

processes influence the solution, one can repeat the 

computations with new data at second triangulation. 



The Goal-Oriented Task-2: implementation to 

other physical process

• For example, the finite element solution gives not 

bad averaged flow for acoustics. After second stage 

one can repeat computations by defect correction 

method in some sufficiently small regions where 

sound is generated.



The Goal-Oriented Task-3: solution of inverse 

problems

• Any mathematical model contains many numerical 
parameters (or even functions) which are known 
approximately. Sometimes their accuracy is not sufficient 
and produces an additional error that lowers model 
quality. Of course, these parameters may be improved 
by real experiments or by extrapolation of physical laws. 
In any case it takes some physical experiments.

• But we can try to solve problem with known excess 
indirect data and to improve this parameters by 
mathematical way. In this case we take cost functional 
as the norm of difference between real and current 
values of these indirect data. 



Navier-Stokes equations



2D Navier-Stokes equations



Notation





The solution of continuity equation. Why 

differentiation along trajectories?

• Solution of this equation is smooth only along its characteristics 

and is not liable to be smooth in any different direction. Of 

course, in real situations there are no discontinuities but instead  

the great gradients and great derivatives appear in some 

directions. 

• Therefore we shall treat approximation along characteristics with 

application of defect corrections to increase order of accuracy.

• The main idea consists in use of simple stable monotone 

scheme of first order of accuracy with consequent defect 

corrections by high-order differences along characteristics and 

by improvement of coefficients field.



Initial finite-difference scheme and high-order 

defect correction in 1D case

Fig. 1. Stencils for initial scheme and defect correction. 

Red lines combine initial finite difference stencil. 

Black line demonstrates characteristics with nodes of high-order 

differences.

= 0:

↑
→

t

x



Defect correction: general approach

• Ahuh = f h − stable finite-difference scheme of low order

• Lhvh = f h − (unstable) finite-difference scheme of high order

Defect correction iterations:

• u0 = uh  where uh is the solution to the stable scheme;

• Ahuk+1 = f h − Lhuk + Ahuk, k = 0, 1, 2. 



Initial finite-difference scheme and high-order 

defect correction in 1D case

Fig. 1. Stencils for initial scheme and defect correction. 

Red lines combine initial finite difference stencil. 

Black line demonstrates characteristics with nodes of high-order 

differences.
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Approximation of momentum equations

• Finite difference scheme (with subsequent defect correction) is 

suggested for inertial terms in combination with finite element 

method for the rest terms.

• For this purpose the equations are slightly modified for 

convergence in discrete analogue of  L2 – norm.

• Of coarse, it is possible to implement finite volume method. The 

convenient norm for convergence of discrete solution by this 

method is discrete analogue of  L1 – norm. It is natural for the 

formulation of momentum conservation.

• But simultaneously we need to solve energy equation for the 

stability of which we have unique formulation of conservation law 

with weighted L2 – norm for component of velocity and L1 – norm for 

energy.



Two conservation laws



Thus



Approximation of momentum equations

• Therefore it is more convenient to implement finite 

element method for component of velocity since 

discrete L2 – norm is more natural for FEM. 

• Since we can remove inertial terms out of variational 

formulation then we are able to implement traditional 

finite element method without any violations like 

upwind tricks and artificial viscosity. 

• Among different types of finite elements the 

triquadratic finite elements on hexahedrons including 

isoparametric ones are more attractive for our 

purposes. 



Some properties for triquadratic finite elements

• First, curvilinear modification of triquadratic element exactly 

approximates curvilinear boundaries and transforms to standard 

cube. 

• The quadrature nodes of Simpson-cubed formula are coincide with 

nodes of degrees of freedom, which results in lumping effect for 

right-hand side and absolute term. This formula gives forth order of 

accuracy in discrete L2 – norm. 

Rectangular triquadratic element Curvilinear triquadratic element



Approximation properties of triquadratic finite elements

For considerably nonuniform meshes

║u − uI║0 ≤ ch3║u║3

║u − uI║1 ≤ ch2║u║3

It is expected that for quasi-uniform meshes with Jacobian matrix            

J = I + h M between neighbouring elements

║uI − uh║0 ≤ ch4║u║4

║uI − uh║1 ≤ ch3║u║4

It is provided by Lin Q., Lin J. for biquadratic elements and some elliptic 

equations. Moreover for the interior of rectangular uniform mesh

║uI − uh − h4φ║0 ≤ ch6║u║6       

║uI − uh − h4φ║1 ≤ ch5║u║6

where φ is some smooth function.



Domains of approximation are different 

for inertial terms and for other ones

Fig. 2. Nodes on violet plane belong to unknown degrees of freedom

in finite element method. Nodes on red curve and planes serve 

the known values for right-hand side in FEM.



Initial momentum equations
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Reduced momentum equations at time level t

Due to approximation of inertial terms along characteristics, 

momentum equations at the time level t became simpler for finite 

element implementation (where  Δt means temporal size):



Since domains of approximation are different 

for inertial terms and other ones it is possible to solve the 

problem on moving meshes

Fig. 2. Nodes on violet plane belong to unknown degrees of freedom

in finite element method. Nodes on red curve and planes serve 

the known values for right-hand side in FEM.



Initial energy equation





Transformed energy equation

η = e1/2 :



Approximation of energy equation

• Now it is convenient to implement finite element 
method since discrete L2 – norm for η is natural for 
FEM. 

• Here we again remove inertial terms out of variational 
formulation due to approximation along trajectories with 
defect correction and then we are able to implement 
traditional finite element method without any violations 
like upwind tricks and artificial viscosity. 

• Among different types of finite elements we again take 
the same triquadratic finite elements on hexahedrons 
including curvilinear ones in the vicinity of body.



Again domains of approximation are different 

for inertial terms and the rest of them and can be taken the 

same for energy and all components of velocity 

Fig. 2. Nodes on violet plane belong to unknown degrees of freedom

in finite element method. Nodes on red curve and planes serve 

the known values for right-hand side in FEM.



Reduced energy equation at time level t

Due to trajectory method for inertial terms the equation became 

simpler for finite element implementation
at the time level t where Δt means temporal size:

t
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ef



Direct Navier-Stokes equations

• 1. At each time level the continuity equation is solved by 
approximation of differences along trajectories with defect correction 
iterations using smoothness almost along trajectories.

• 2. At each time level the momentum equations are firstly simplified 
due to approximation of inertial terms along trajectories. Then they 
are solved by triquadratic finite elements on hexahedrons including 
curvilinear elements for the better approximation of curvilinear 
boundaries. 

• 3. The energy equation firstly transformed by substitution η = e1/2. 
At each time level the transformed equation is simplified due to 
approximation of inertial terms along trajectories. Then it is solved 
by triquadratic finite elements on hexahedrons including curvilinear 
ones. 



CPU + GPU

• MPI: Message passing interface

- Language for data exchange

- Local and shared clusters

• CUDA: Parallel computing architecture on 

graphics processing units

- CUDA is a parallel computing architecture 

and technology that enables dramatic 

increases in computing performance by 

harnessing the power of the graphics 

processing units (GPU)



• Thank you for your attention!


