МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ КАПЛИ ПО СТЕНКЕ КАНАЛА ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ С ПЕРЕМЕННОЙ СМАЧИВАЕМОСТЬЮ

А.Л. Куперштох

Институт гидродинамики им. М.А. Лаврентьева СО РАН, Новосибирский государственный университет, 630090, Новосибирск, Россия

Введение

Капля, лежащая на горизонтальной твердой поверхности, неподвижна. Однако, если свойства материала поверхности изменяются по координате, то может меняться и уровень смачиваемости. Это достигается градиентными по свойствам покрытиями. В этом случае контактные углы тоже изменяются по координате. Поэтому капля уже не может находиться в равновесии и начинает двигаться.

Угол смачивания тесно связан с величиной сил взаимодействия молекул жидкости и твердой поверхности. В общем случае контактные углы зависят от скорости перемещения контактной линии по поверхности.

Для нестационарного движения капли задачу приходится моделировать численно. При этом нужно описывать течения флюида с поверхностным натяжением на границе раздела жидкость–газ и взаимодействием с твердой поверхностью. Для компьютерного моделирования такой задачи использовался метод решеточных уравнений Больцмана (LBM), впервые предложенный в работах [1,2].

Метод решеточных уравнений Больцмана

Для компьютерного моделирования такой задачи использовался вариант метода решеточных уравнений Больцмана (LBM), описанный в работах [3-7]. Для трехмерной модели D3Q19 [8] допустимы 19 возможных векторов скорости частиц \mathbf{c}_k , для которых модуль скорости принимает значения $|\mathbf{c}_k| = 0$, $h/\Delta t$ и $\sqrt{2}h/\Delta t$, где h – шаг сетки, а Δt – шаг по времени. Тогда уравнение эволюции для функций распределения N_k можно записать в виде

$$N_k(\mathbf{x} + \mathbf{c}_k \Delta t, t + \Delta t) = N_k(\mathbf{x}, t) + \Omega_k(N) + \Delta N_k$$

где $\Omega_k = (N_k^{eq}(\rho, \mathbf{u}) - N_k(\mathbf{x}, t))/\tau$ – оператор столкновений в виде BGK, τ – характерное время релаксации к локальному равновесию. Для учета объемных сил (внутренних и внешних) используется метод точной разности (EDM) [6,7]

$$\Delta N_k(\mathbf{x},t) = N_k^{eq}(\rho,\mathbf{u}+\Delta\mathbf{u}) - N_k^{eq}(\rho,\mathbf{u}).$$

Гидродинамические переменные: плотность жидкости ρ и скорость **u** в узле вычисля-

ются по формулам $\rho = \sum_{k=0}^{b} N_k$ и $\rho \mathbf{u} = \sum_{k=1}^{b} \mathbf{c}_k N_k$.

Для описания уравнения состояния $P(\rho,T)$ использована модель псевдопотенциала [9] $U = P(\rho,T) - \rho\theta$, в которой вводятся внутренние силы $\mathbf{F} = -\nabla U$, действующие на вещество в узле решетки. Использовалось уравнение состояния Ван-дер-Ваальса в приведенных переменных

© А.Л. Куперштох, 2017

$$\widetilde{P} = \frac{8\widetilde{\rho}\widetilde{T}}{3-\widetilde{\rho}} - 3\widetilde{\rho}^2$$

Влияние твердой поверхности на флюид моделировалось силами взаимодействия между узлами жидкости и твердой поверхности, которые описывали степень смачивания и величину контактных углов. Эти силы действуют на узел **x**, принадлежащий флюиду, со стороны ближайших узлов, представляющих твердую поверхность [10,11]

$$\mathbf{F}_{k} = w_{k} \psi(\rho(\mathbf{x})) B(\widetilde{\rho}_{\ni \phi \phi}(\mathbf{x} + \mathbf{e}_{k})) \mathbf{e}_{k}.$$

Здесь $\tilde{\rho}_{9\varphi\varphi}$ – эффективная приведенная плотность.

Параллельные расчеты на GPU

Расчеты проводились на настольном суперкомпьютере "Supermicro 4027GR" на основе графических процессоров (GPU) (6 модулей GTX Titan–Black и 2 модуля GTX Titan Xp). Общее количество доступных потоковых процессоров (ядер) компьютера более 30000 и 60 Гбайт быстрой внутренней памяти. Параллельные вычисления выполняются одновременно на всех ядрах графических процессоров. Кроме того, внутренняя память GPU на порядок быстрее, чем оперативная память компьютера.

Результаты компьютерного моделирования

На рис. 1 показаны результаты моделирования капли, двигающейся по горизонтальной смачиваемой твердой стенке с градиентом смачивания.

Зависимость эффективной приведенной плотности от координаты *x* принималась линейной

$$\widetilde{\rho}_{\ni \varphi \varphi} = 1 + 0.0004 x \,.$$

На плоскости z = 0 принимались условия непротекания и непроскальзывания.

Граница движущейся капли в центральном вертикальном сечении (рис. 2) получена путем компьютерной обработки полей плотности вещества. Эффект движения капли вдоль оси *x* возникает из-за того, что наступающий контактный угол оказывается меньше отступающего, так как степень смачиваемости возрастает с увеличением координаты *x*.

Рис. 1. Движение капли по твердой поверхности с переменной смачиваемостью. Расчетная сетка 512×272×160. *t* = 2000 (a), 20000 (б), 50000 (в).

Рис. 2. Граница движущейся направо капли в центральном вертикальном сечении x - z рассчитана по распределению плотности жидкости и пара в центральном вертикальном сечении x - z.

СПИСОК ЛИТЕРАТУРЫ

- McNamara G. R., Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata // Physical Review Letters. 1988. Vol. 61, No. 20. P. 2332–2335.
- Higuera F. J., Jiménez J. Boltzmann approach to lattice gas simulations. // Europhys. Lett. 1989. Vol. 9, No. 7. P. 663–668.
- 3. Куперштох А.Л. Моделирование течений с границами раздела фаз жидкость-пар методом решеточных уравнений Больцмана // Вестник НГУ: Серия "Математика, механика и информатика". 2005. Т. 5, № 3. С. 29–42.
- 4. Kupershtokh A.L., Medvedev D.A., Karpov D.I. On equations of state in a lattice Boltzmann method // Computers and Mathematics with Applications. 2009. Vol. 58, No. 5. P. 965–974.
- Куперштох А.Л. Трехмерное моделирование двухфазных систем типа жидкость-пар методом решеточных уравнений Больцмана на GPU // Вычислительные методы и программирование. 2012. Т. 13. С. 130–138.
- 6. Куперштох А.Л. Учет действия объемных сил в решеточных уравнениях Больцмана // Вестник НГУ: Серия "Математика, механика и информатика". 2004. Т. 4, № 2. С. 75–96.
- Kupershtokh A.L. Criterion of numerical instability of liquid state in LBE simulations // Computers and Mathematics with Applications, 2010. Vol. 59, No. 7. P. 2236–2245.
- Qian Y.H., d'Humières D., Lallemand P. Lattice BGK models for Navier Stokes equation // Europhys. Lett. 1992. Vol. 17. P. 479–484.
- Qian Y. H., Chen S. Finite size effect in lattice-BGK models // International Journal of Modern Physics C. 1997. Vol. 8, No. 4. P. 763–771.
- Kupershtokh A.L., Ermanyuk E.V., Gavrilov N.V. The rupture of thin liquid films placed on solid and liquid substrates in gravity body forces // Comm. Comp. Phys. 2015. Vol. 17. P. 1301–1319.
- 11. Kupershtokh A. L. Dynamics of droplets moving on a solid surface: Lattice Boltzmann simulations // MATEC Web of Conferences. 2016. Vol. 84. P. 00018.