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Hydraulic fracturing 
Multiple fractured horizontal wells (MFHW) are widely used for 

enhancement of oil recovery of low permeability reservoirs.  
MFHW design is characterized by a length and a width of fractures, 

a number of fractures and a length of a horizontal well. 



The optimization problem 
The problem of MFHW optimization can be formulated as following: 

𝒇𝒇 𝒙𝒙 = (𝐶𝐶𝐻𝐻𝐻𝐻 ,−𝑁𝑁𝑁𝑁𝑁𝑁,−𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡)  →  min, 
𝒙𝒙 = 𝑁𝑁𝑓𝑓 ,𝑀𝑀𝑝𝑝, 𝐿𝐿𝑤𝑤

4 ≤ 𝑁𝑁𝑓𝑓 ≤ 12,
4000 ≤ 𝑀𝑀𝑝𝑝 ≤ 90000 𝑘𝑘𝑘𝑘 ,

400 ≤ 𝐿𝐿𝑤𝑤 ≤ 1200 𝑚𝑚 .

 

Optimization parameters: 
• the number of fractures 𝑁𝑁𝑓𝑓, 
• the proppant mass for a fracture 𝑀𝑀𝑝𝑝,  
• the length of a horizontal well 𝐿𝐿𝑤𝑤.  
 

Optimization objectives: 
• treatment costs  𝐶𝐶𝐻𝐻𝐻𝐻, 
• Net Present Value 𝑁𝑁𝑁𝑁𝑁𝑁, 
• cumulative well production 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡. 
 

 Scheme of MFHW 
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Volume balance for an incompressible Newtonian fluid inside the crack: 
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The elasticity equation: 
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The functions K and E are the complete elliptic integrals of the first and the 
second kind, respectively. 
The fracture width in the tip region: 

𝑤𝑤 →
𝐾𝐾𝐾
𝐸𝐸𝐾

𝜋𝜋 − 𝑟𝑟 1 2⁄ ,  𝑟𝑟 → 𝜋𝜋 

Module 1: Fracture geometry [1] 

[1] E. V. Dontsov, «An approximate solution for a penny-shaped hydraulic fracture that accounts for 
fracture toughness, fluid viscosity and leak-off», Royal Society Open Science, 3: 160737, Published  
7 December 2016. 



Input parameters: 
𝑇𝑇 is the injection time, 
𝜇𝜇0 is the viscosity of injection fluid, 
𝑄𝑄0 is the injection rate, 
𝐸𝐸 is the Young's modulus, 
𝐾𝐾𝐼𝐼𝐼𝐼 is the mode I fracture toughness of the 
rock, 
𝐶𝐶𝑙𝑙 is the Carter’s leak-off parameter. 

Output parameters: 
𝑙𝑙 is the crack half-length, 
w is the crack width. 

Penny-shaped hydraulic fracture  

𝑇𝑇 = 𝑀𝑀𝑝𝑝

𝜌𝜌𝑝𝑝𝑄𝑄0𝐶𝐶
 is the injection time, 

𝜇𝜇 =  𝜇𝜇0 1 − 𝐶𝐶
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

−2.5
 is the viscosity of proppant slurry. 

Here 𝜌𝜌𝑝𝑝 is the proppant density, 𝜇𝜇0 is the viscosity of carrier fluid, 𝐶𝐶 is the proppant 
concentration. 

Module 1: Fracture geometry 



Module 2: Calculation of the post-fracture production rate 

Input parameters: 
𝑙𝑙 is the crack half-length, 
w is the crack width,  
𝑁𝑁𝑓𝑓 is the number of fractures. 

 Scheme of multiple fractured horizontal well 

Output parameters : 
𝑄𝑄𝑡𝑡 is the production rate in 
time t. 



The express assessment of the production rate [2] 
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We assume that the post-fracture production rate declines exponentially 

𝑄𝑄𝑡𝑡 =  𝑄𝑄𝑒𝑒−𝛼𝛼𝑡𝑡. 

[2] S. V. Elkin, A. A. Aleroev, N. A. Veremko and M. V. Chertenkov, «Model for the rapid calculation of the 
flow rate of the horizontal well fluid as a function of the number of hydraulic fracturing cracks», Oil 
Industry Journal, №12, 2016. 



Module 3: Economic criteria 
 

The economic criterion NPV is calculated as following:  

𝑁𝑁𝑁𝑁𝑁𝑁 =  �
П𝑡𝑡 − 𝐴𝐴𝑡𝑡
(1 + 𝐷𝐷)𝑡𝑡

− 𝐶𝐶𝐻𝐻𝐻𝐻

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡=1

. 

Here П𝑡𝑡 is the cash inflow at t-th year, 𝐴𝐴𝑡𝑡 is current expenses, 𝐷𝐷 is the discount 
rate, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is the number of years which a revenue is calculated for. 
 

We propose to estimate the fracturing cost as following: 
                                                                 proppant injection costs                                               additional costs 

𝐶𝐶𝐻𝐻𝐻𝐻 =  𝑁𝑁𝑓𝑓 𝑁𝑁𝑟𝑟𝑝𝑝 ∙ 𝑀𝑀𝑝𝑝 + 𝑇𝑇𝐶𝐶 ∙ 𝑀𝑀𝑝𝑝 + 𝑁𝑁𝐻𝐻 ∙ 𝑁𝑁𝑟𝑟𝐻𝐻 + 𝐷𝐷𝐶𝐶𝐷𝐷𝑠𝑠𝜕𝜕 ∙ 𝐿𝐿𝑤𝑤 + 𝐴𝐴𝐶𝐶. 
  

                                            proppant cost                                     fluid cost                drilling costs 

 
Here 𝑁𝑁𝑓𝑓 is the number of fractures, 𝑁𝑁𝑟𝑟𝑝𝑝 is the proppant price, 𝑀𝑀𝑝𝑝 is the proppant 
mass, 𝑇𝑇𝐶𝐶 is the cost of a proppant injection, 𝑁𝑁𝐻𝐻 is the volume of the fluid, 𝑁𝑁𝑟𝑟𝐻𝐻 is 
the fluid price, 𝐷𝐷𝐶𝐶𝐷𝐷𝑠𝑠𝜕𝜕 is the drilling cost, 𝐿𝐿𝑤𝑤 is the length of a horizontal well and 
𝐴𝐴𝐶𝐶 is the fixed and miscellaneous costs. 



Optimization algorithms 
In our case a potential solution is 𝑥𝑥 = 𝑁𝑁𝑓𝑓 ,𝑀𝑀𝑝𝑝, 𝐿𝐿𝑤𝑤 . 

1. The number of criteria 𝑀𝑀 = 1: 
• If f(𝑥𝑥1) < f(𝑥𝑥2):  𝑥𝑥1 is better than 𝑥𝑥2. 

 
2. M > 1: 

• 𝑥𝑥1 dominates 𝑥𝑥2, if 𝑓𝑓𝑖𝑖 𝑥𝑥1 < 𝑓𝑓𝑖𝑖 𝑥𝑥2  ∀𝑖𝑖. 
• If 𝑥𝑥1 is better than 𝑥𝑥2 for one criterion, but 𝑥𝑥2 is better for 

another one:  𝑥𝑥1 and 𝑥𝑥2 are non-dominant. 
• The set of non-dominate solutions is called Pareto front. 

 
Applied three different stochastic algorithms: 

• the genetic algorithm NSGA-II, 
• the particle swarm optimization,  
• the simulated annealing.  
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Genetic algorithm 
A genetic algorithm (GA) is an evolutionary search algorithm that 

emulates the process of natural selection. 

 Flowchart of GA 



The first front =  {the non-dominant set of individuals}, 
The second front = {the set of individuals which are dominated only by the 

individuals of the first front}, 
And so on. 
Rank = the front number. 
 
The crowding distance shows how close an individual is to its neighbors. 

NSGA-II (Non-Dominated Sorting Genetic Algorithm) [3] 

[3] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan, «A Fast Elitist Non-Dominated Sorting 
Genetic Algorithm for Multi-Objective Optimization: NSGA-II», Lecture Notes in Computer Science, 2000,  
p. 849-858. 

Individuals distribution by fronts                          Calculation of the crowding distance 



Selection of the next generation in NSGA-II 
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Particle swarm optimization 
The Particle swarm optimization (PSO) is based on the simulation of the 

behavior of birds within a flock. 
The formula for velocity of particles:  

𝒗𝒗𝑖𝑖
(𝑘𝑘+1) = 𝐶𝐶𝑖𝑖𝑛𝑛𝒗𝒗𝑖𝑖

(𝑘𝑘) + 𝐶𝐶𝐼𝐼𝑡𝑡𝑐𝑐𝑟𝑟1 𝒃𝒃𝑖𝑖
𝑘𝑘 − 𝒙𝒙𝑖𝑖

𝑘𝑘 + 𝐶𝐶𝑠𝑠𝑡𝑡𝐼𝐼𝑟𝑟2 𝒈𝒈(𝑘𝑘) − 𝒙𝒙𝑖𝑖
𝑘𝑘 . 

Here k is the iteration number, 𝒃𝒃𝑖𝑖
𝑘𝑘  is the personal best position for the i-th 

particle, 𝒈𝒈(𝑘𝑘) is the best position for the whole swarm, 𝐶𝐶𝑖𝑖𝑛𝑛 is the inertia factor, 
𝐶𝐶𝐼𝐼𝑡𝑡𝑐𝑐 is the cognitive coefficient, 𝐶𝐶𝑠𝑠𝑡𝑡𝐼𝐼 is the social coefficient, r1 and r2 are 
random numbers uniformly distributed at (0, 1). 
 
  



• Classical PSO: 𝐶𝐶𝑖𝑖𝑛𝑛,𝐶𝐶𝐼𝐼𝑡𝑡𝑐𝑐  and 𝐶𝐶𝑠𝑠𝑡𝑡𝐼𝐼  are random numbers uniformly 
distributed 

𝐶𝐶𝑖𝑖𝑛𝑛 ∈ 0.1, 0.5 ,𝐶𝐶𝐼𝐼𝑡𝑡𝑐𝑐 ∈ 1.5, 2.0  и 𝐶𝐶𝑠𝑠𝑡𝑡𝐼𝐼 ∈ 1.5, 2.0 . 
 
• Modified PSO (MPSO): the particle may be affected by turbulence 

(the analogue of the mutation operator in GA). 

Particle swarm optimization 



Simulated annealing 
𝒙𝒙 is a state of system, 𝑓𝑓 𝒙𝒙  is the system energy. 
The stable crystal structure corresponds to the minimum energy 𝑓𝑓 𝒙𝒙 . 
 

1. Generation a new solution 𝒙𝒙𝐾 in accordance with the distribution 𝑘𝑘(𝒙𝒙,𝑇𝑇); 
2. If 𝑓𝑓 𝒙𝒙𝐾 < 𝑓𝑓 𝒙𝒙 , the new solution is accepted as a new state; 
3. If 𝑓𝑓 𝒙𝒙𝐾 > 𝑓𝑓 𝒙𝒙 , the new solution is accepted with the probability: 

𝜕𝜕 𝑓𝑓,𝑇𝑇 =
1

1 + exp((𝑓𝑓 𝒙𝒙𝐾 − 𝑓𝑓 𝒙𝒙 ) 𝑇𝑇)⁄ . 

 
The temperature of the system: 

𝑇𝑇 𝑘𝑘 = 𝑇𝑇0𝛼𝛼𝑘𝑘 , 
where k is the iteration step, 𝑇𝑇0 is the initial temperature, 𝛼𝛼 ∈ [0.5, 0.99] is the cooling 
factor. 
 
• Boltzmann annealing (𝑆𝑆𝐴𝐴𝐵𝐵): 𝑘𝑘 𝑥𝑥′; 𝑥𝑥,𝑇𝑇 = (2𝜋𝜋𝑇𝑇)−𝑁𝑁 2⁄  exp(− 𝑥𝑥′ − 𝑥𝑥 2 2𝑇𝑇)⁄ . 
• Cauchy annealing (𝑆𝑆𝐴𝐴𝐶𝐶): 𝑘𝑘 𝑥𝑥′; 𝑥𝑥,𝑇𝑇 = 𝑇𝑇

(− 𝑚𝑚′−𝑚𝑚 2+𝑇𝑇2)𝑁𝑁+1 2⁄ . 
𝑁𝑁 is the number of objective parameters. 



The result of the Rastrigin test optimization problem 
  

Rastrigin’s function: 

𝑓𝑓 𝒙𝒙 = 10𝑁𝑁 +  � 𝑥𝑥𝑖𝑖2 − 10 cos 2𝜋𝜋𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

,

−5.12 ≤ 𝑥𝑥𝑖𝑖 ≤ 5.12. 
Global minimum 𝑓𝑓 𝟎𝟎 = 0. 

  NSGA-II PSO MPSO 𝑺𝑺𝑨𝑨𝑩𝑩 𝑺𝑺𝑨𝑨𝑪𝑪 

∆𝐹𝐹 0.002246 0.795967 0.269221 0.003017 0.075076 

𝜕𝜕 69.330165 0.212312 0.475257 0.273012 0.171960 

Table.1. The analysis of the efficiency of the algorithms 
 ∆𝐹𝐹 is an average deviation from the exact function value, 

𝜕𝜕 is the average running time of the program. 



Convergence of different algorithms  

Rastrigin’s function Convergence rate 



The result of the DTLZ4 test optimization problem 
 

𝐹𝐹1,𝐹𝐹2,𝐹𝐹3 → 𝑚𝑚𝑖𝑖𝑚𝑚, 

𝑘𝑘 𝒙𝒙 =  � 𝑥𝑥𝑖𝑖 − 0.5 2
𝑁𝑁

𝑖𝑖=3

,𝑁𝑁 = 12, 0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1, 

𝐹𝐹1 𝒙𝒙 = 1 + 𝑘𝑘 cos 0.5𝜋𝜋𝑥𝑥1100 cos 0.5𝜋𝜋𝑥𝑥2100 , 
𝐹𝐹2 𝒙𝒙 = 1 + 𝑘𝑘 cos 0.5𝜋𝜋𝑥𝑥1100 sin 0.5𝜋𝜋𝑥𝑥2100 , 

𝐹𝐹3 𝒙𝒙 = 1 + 𝑘𝑘 sin 0.5𝜋𝜋𝑥𝑥1100 . 

NSGA-II PSO SA 



MFHW optimization  
Task А. The single-objective optimization : 

𝑁𝑁𝑁𝑁𝑁𝑁 → 𝑚𝑚𝑎𝑎𝑥𝑥 
Task B. The optimization of three objective functions : 

𝐶𝐶𝐻𝐻𝐻𝐻 → 𝑚𝑚𝑖𝑖𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁 → 𝑚𝑚𝑎𝑎𝑥𝑥,𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 → 𝑚𝑚𝑎𝑎𝑥𝑥 
 

𝑵𝑵𝒇𝒇 𝑴𝑴𝒑𝒑,𝒌𝒌𝒈𝒈 𝑳𝑳𝒘𝒘,𝒎𝒎 NPV , $ t 

NSGA-II 9 90000 877 9.79 ∙ 105 248.66 

PSO 9 90000 877 9.79 ∙ 105 239.33 

MPSO 9 90000 877 9.79 ∙ 105 256.54 

𝑆𝑆𝐴𝐴𝐵𝐵 9 89325 872 9.77 ∙ 105 286.15 

Table.2. Results of Task A 



Convergence rate. Task B 

NSGA-II PSO 

SA 



The Pareto fronts for Task B 
for reservoirs of different permeabilities 

𝐾𝐾 = 0.5 𝑚𝑚𝐷𝐷,𝐶𝐶 = 0.2 𝐾𝐾 = 1 𝑚𝑚𝐷𝐷,𝐶𝐶 = 0.2 

𝐾𝐾 = 5 𝑚𝑚𝐷𝐷,𝐶𝐶 = 0.4 
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Conclusion 
1. Considered various optimization cases:  

• the single-objective optimization, 
• the optimization of three objective functions. 

 
2. Applied various algorithms:  

• the genetic algorithm NSGA-II, 
• the particle swarm optimization,  
• the simulated annealing.  
 

3. The maximum NPV does not necessarily correspond to the maximum 
oil production. It depends on the permeability of the reservoir. 
 

4. For MFHW optimization problem two optimization methods PSO and 
NSGA-II are of interest. 
 

5. NSGA-II showed the ability to determine complex Pareto front, 
whereas PSO obtains the acceptable computation time. 
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