Determination of the hydraulic fracturing initiation pressure for different types of the well completion

Latyshev A., Golovin S., Khe A.

Lavrentev Institute of Hydrodynamics Novosibirsk State University

Novosibirsk, July 1 - 5 2019

Problem formulation

The problem of determining the maximum pressure referred to the hydraulic fracturing initiation. Completion systems of a well:

- open wellbore (a),
- open wellbore with packer (b),
- cased well with perforations (c).

It is necessary to locate fracturing well zones and to determine the pressure value, which produce this fractures.

Open wellbore. Elasticity model

 $\begin{aligned} &\Pi: \operatorname{div} \boldsymbol{\sigma} = \mathbf{0}, \boldsymbol{\sigma} = \mathbf{A}\boldsymbol{\varepsilon}, \\ &\partial \Pi_{w}: \boldsymbol{\sigma} \langle \mathbf{n} \rangle = -p_{w}\mathbf{n}, \\ &\partial \Pi_{o}: \boldsymbol{\sigma} = \boldsymbol{\sigma}^{1}(\mathbf{x}), \end{aligned}$

where $\sigma^{1}(x)$ — an analytic solution of infinite hole without perforations in an elastic media with arbitrary is-situ stresses [Ching H. Yew, Xiaowei Weng, 2015].

Open wellbore with packer. Boundary conditions

- Inner parts of the open well without packer $\partial \Pi_{w1}: \sigma \langle \mathbf{n} \rangle = -p_{w1}\mathbf{n},$ $\partial \Pi_{w2}: \sigma \langle \mathbf{n} \rangle = -p_{w2}\mathbf{n}.$
- The site of the contact between the packer and the rock $\partial \Pi_{packer}$: $\sigma \langle \mathbf{n} \rangle = -p_{packer}\mathbf{n}$.
- Side, top and bottom parts of the border $\partial \Pi_{\infty}^{s} \cup \partial \Pi_{\infty}^{t} \cup \partial \Pi_{\infty}^{b}$: $\sigma = \sigma^{1}(\mathbf{x})$,

where p_{packer} — an analytic solution of elastic puck, inserted in a hole of a rigid plate [Muskhelishvili, 1966]:

$$p_{packer} = \Big(1-rac{D}{D_p}\Big)rac{E_p}{1-
u_p-2
u_p^2}.$$

∂Π _{w1}	$\partial \Pi_{\it packer}$	$\partial \Pi_{w2}$
		a second
		∂⊓₅∝

Cased wellbore with perforations

The main domain is presented as parallelepiped Π , containing the well Ω (cylinder). Well consists from the steel pipe, the coaxial shell of cement stone and the surrounding rock. Perforations ω_j are presenting as cylindrical bodies with a spherical ending, situated perpendicular to the well's axis.

Cased wellbore. Boundary conditions

- Inner surfaces of the well and perforations: $\partial \Pi_w \cup \partial \Pi_p : \sigma \langle \mathbf{n} \rangle = -p_w \mathbf{n}, \quad p = p_w.$
- Boundaries between steel pipe, cement shell and rock $\partial \Pi_{sc} \cup \partial \Pi_{cr}$: displacements are continuous functions.
- Side, top and bottom parts of the border $\partial \Pi_{\infty}^{s} \cup \partial \Pi_{\infty}^{t} \cup \partial \Pi_{\infty}^{b}$: $\sigma = \sigma^{1}(\mathbf{x})$.

where $\sigma^{1}(x)$ — an analytic solution of infinite hole without perforations in an elastic media with arbitrary is-situ stresses [Ching H. Yew, Xiaowei Weng, 2015].

Realization

Typical values of the model's parameters

Symbol	Value	Unit	Name
P	50	MPa	Pressure inside the well
D	160	mm	Well's diameter
d₅	1	cm	Thickness of steel pipe
dc	2	cm	Thickness of cement shell
1	1	m	Perforation length
d	10	mm	Perforation diameter
ρ	10	hole / m	Perforation density
h	1	m	Length of perforation area
θ	60	degree	Perforations phasing
E _r	10	GPa	Young's modulus of the rock
E _c	14	GPa	cement
Es	200	GPa	steel
νr	0.15	-	Poisson's ratio of the rock
ν_c	0.22	-	cement
ν_s	0.27	-	steel
σ_{xx}^{∞}	70	MPa	Rock in-situ stresses
σ_{yy}^{∞}	30	MPa	
σ_{zz}^{∞}	50	MPa	
σ_{xy}^{∞}	3	MPa	
σ_{yz}^{∞}	1	MPa	
σ_{xz}^{∞}	2	MPa	
σ_r^c	40	MPa	Rock uniaxial compression strength
σ_r^t	4	MPa	Rock uniaxial tensile strength
σ_r^y	40	MPa	Rock yield strength
σ_c^c	45	MPa	Cement uniaxial compression strength
σ_c^t	4.5	MPa	Cement uniaxial tensile strength
σ_c^y	45	MPa	Cement yield strength
σ_s^c	1500	MPa	Steel uniaxial compression strength
σ_s^t	900	MPa	Steel uniaxial tensile strength
σ_s^y	1500	MPa	Steel yield strength

Numerical results. Packer case

Failure criteria intensity:
$$I_{\sigma} = \begin{cases} f(\sigma_{ij}) - g(\sigma_c, \sigma_t, ...), & f(\sigma_{ij}) \ge g(\sigma_c, \sigma_t, ...), \\ 0, & \text{otherwise,} \end{cases}$$

Numerical results. Cased wellbore with perforations

Stresses jump nearby perforation base

Рис.: Failure criteria: Mohr — Coulomb

Numerical results. Cased wellbore with perforations

Willam — Warnke

Drucker — Prager (parabolic)

Mohr — Coulomb

Рис.: Different failure criteria

Conclusion

Results

- Takes into account a complex geometry of the domain
- Building of the geometry and mesh generation work automatically via such program libraries as Open CASCADE and Netgen
- Parameters of all presented materials (rock, cement, steel, elastomer) are considered
- All computations are parallelized by MPI
- $\bullet\,$ Is-situ stresses have arbitrary values and the well's axis situated at arbitrary angles to the rock
- Checks several failure criteria

Plans

- Make the model more complex (take into account poroelastic and elastoplastic effects)
- Explore an evolution of the distraction zone
- Add calculations on isoparametric elements and a mesh adaptation features
- Make calculations on P2 elements (increase accuracy)

Latyshev Andrey latyshev.andre@yandex.ru