Solving Nonlinear Schrödinger Equations Using Improved Physics-Informed Neural Networks

Liu Shuang

Novosibirsk State University), Novosibirsk, Russia liushusng1118@mail.ru

This paper proposes an innovative Physics-Informed Neural Network (PINN) architecture that integrates adaptive activation functions and Latin Hypercube Sampling, significantly enhancing the efficiency of solving complex mathematical-physical problems [1]. The improved framework has been successfully applied to solve the three-dimensional nonlinear Schrödinger equation, accurately simulating the propagation dynamics of optical pulses in nonlinear media and capturing their evolution across spatial and temporal scales [2].

The enhanced PINN demonstrates superior convergence and computational efficiency. The stable reduction in loss indicates its effectiveness in learning physical laws and performing data fitting. Key innovations include: physics-constrained layers that ensure compliance with fundamental physical principles; a multi-objective loss function for balancing constraints; and efficient computation for high-dimensional problems. This work provides a powerful tool for modeling optical pulse transmission, studying soliton dynamics, and simulating wave propagation [3].

References

- 1. Liu S., Luan Z., Kabanikhin S. I., Strijhak S. V., Zhang Y. Solving A Type of Nonlinear Schrödinger Equations Using A Physically Informed Neural Network And Tuning The Adaptive Activation Function // TWMS J. Pure Appl. Math. 2024. V. 15, no. 2. P. 203–227.
- 2. Agrawal G. P. Nonlinear fiber optics // Nonlinear Science at the Dawn of the 21st Century. Springer, 2000. P. 195–211.
- 3. Song Y., Zhang M., Jiang X., Zhang F., Ju C., Huang S., Lau A. P. T., Wang D. Srs-net: a universal framework for solving stimulated raman scattering in nonlinear fiber-optic systems by physics-informed deep learning // Commun. Eng. 2024. V. 3, no. 1. P. 109.

1