3-я Всероссийская научная конференция Методы исследования состава и структуры функциональных материалов

МИССФМ-2020

Новосибирск, 1-4 сентября 2020 года

ИССЛЕДОВАНИЕ НАНОСТРУКТУРИРОВАННЫХ ОБЪЕМНЫХ СПЛАВОВ (Со-Р)_{100-Х}Си_Х МАГНИТОСТРУКТУРНЫМИ МЕТОДАМИ

<u>Кузовникова Людмила Александровна¹</u>, Денисова Е.А.^{2,3}, Немцев И.В.⁴, Исхаков Р.С.², Кузовников А.А.¹, Мальцев В.К.², Шепета Н.А.³

¹Красноярский институт железнодорожного транспорта, Красноярск, Россия ²Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ³Сибирский федеральный университет, Красноярск, Россия ⁴КНЦ СО РАН, Красноярск, Россия Проведены магнитоструктурные исследования объемных наноструктурированных композиционных материалов Co-P/Cu, изготовленных методом динамического компактирования. Исходные частицы типа «ядро-оболочка» были синтезированы методом химического осаждения. Определены характеристики магнитной микроструктуры полученных материалов. Показано, что использование композиционных частиц позволяет получать массивные материалы с сохранением структуры и основных магнитных характеристик исходных порошков.

Синтез при воздействии ударных волн представляет интерес с точки зрения получения массивных материалов с фазами в метастабильном состоянии. Механическое воздействие ударной волны создает условия как для размельчения исходных веществ, так и для синтеза конечных продуктов. После прохождения ударной волны происходит быстрое охлаждение материала при этом стабилизируются высокотемпературные и метастабильные кристаллические модификации.

Эксперимент

- В качестве прекурсоров для динамического компактирования использовались порошки с композиционными частицами типа «ядрооболочка», которые были синтезированы методом химического осаждения с гипофосфитом натрия в качестве восстановителя.
- В качестве ядра для образцов (Co₈₈P₁₂)_{100-X}/Cu_X использовались частицы Co(P) с содержанием фосфора 12 ат. %, находящиеся в аморфном состоянии, на которые затем была нанесена кристаллическая оболочка из меди различной толщины.
- Композиционные частицы имеют сферическую форму для всех исследуемых концентраций фосфора и меди, толщина слоя меди (в зависимости от ее содержания) изменялась от 0,05 мкм для порошков (Co-P)₈₀/Cu₂₀ до 0,8 мкм для (Co-P)₁₀/Cu₉₀.
- Полученные композиты изучались методами рентгеновской дифракции и электронной микроскопии (РЭМ Hitachi TM-3000).
 Объемные образцы были изготовлены методом динамического компактирования при плоской схеме прессования.

РЭМ - изображения композиционных частиц порошка $Co_{88}P_{12}/Cu$ (*a*) и EDX карта распределения элементов в частицах порошка (*б*); шлифов объемных образцов $(Co_{88}P_{12})_{80}/Cu_{20}$ (*в*) и $(Co_{88}P_{12})_{30}/Cu_{70}$ (*г*), изготовленных динамическим компактированием частиц $Co_{88}P_{12}/Cu$, и EDX карты распределения меди и кобальта в прессовке (*д*, *e*).

Ядерный магнитный резонанс

Методом ЯМР установлено, что в частицах исходных порошков большинство атомов кобальта имеют ближайшее окружение ГЦК-типа с небольшим количеством ГПУ-позиций. УВН приводит к более однородному состоянию сплава Co(P) и возрастанию числа атомов кобальта с ГПУ-типом ближайшего окружения. На рисунке представлены спектры ЯМР, записанные при *T* = *77 К* для компактов с различной толщиной медной оболочки. Наблюдаемая форма спектров ЯМР для объемных образцов всех составов указывает на гетерофазное строение ферромагнитной Co(P) фазы: сосуществуют атомы кобальта с ГПУ- и ГЦК-типами ближайшего окружения. Отношение количества атомов с ГПУ- и ГЦК-симметрией ближайшего окружения несколько различно для компактов с различной толщиной медной оболочки. С увеличением содержания меди растет доля атомов кобальта с ГЦК-симметрией ближайшего окружения.

Ферромагнитный резонанс

Ширина линии ФМР исходных порошков $(Co_{88}P_{12})_{100-X}/Cu_X$ (1) и прессовок (2)

Ударно волновое нагружение вызывает сужение линии ФМР

Образцы для измерения кривых намагничивания и ФМР были вырезаны из прессовок в виде плоскопараллельных пластинок с размерами $3 \times 7 \times 1$ мм. Оказалось, что кривые намагничивания, измеренные при взаимно перпендикулярных направлениях внешнего поля относительно пластинки, практически совпадают, так же, как и спектры ферро-магнитного резонанса, записанные при различных ориентациях образца относительно внешнего поля. Следовательно, в случае композиционных объемных образцов (Co₈₈P₁₂)_{100-х} /Cu_x диполь-дипольное взаимодействие не определяет форму кривой намагничивания для всех исследуемых значений *х*. Основной вклад в случае компактов Co(P)/Cu вносит анизотропия формы Co(P) частиц.

Корреляционная магнитометрия

Параметры магнитной микроструктуры (размер области магнитных корреляций, так называемого стохастического магнитного домена и эффективная анизотропия в них, пространственная размерность спиновой системы) рассчитывали, используя развитый на основе модели случайной анизотропии метод корреляционной магнитометрии, основанный на изучении закона приближения намагниченности к насыщению (ЗПН) *Игнатченко В.А., Исхаков Р.С. // ФММ. 1992. №* 6. С. 75.

Метод основан на исследовании закона приближения намагниченности к насыщению. После учета размагничивающего поля гранул (4 π M_s/3) наилучшей подгонкой кривых приближения намагничивания к насыщению в этих материалах является ЗПН вида:

$$M(H) = M_{s} \cdot \left(1 - \frac{1}{15} \cdot H_{a}^{2} \cdot H^{-1/2} \cdot \left(H^{3/2} + H_{R}^{3/2}\right)^{-1}\right)$$
(1)

где $H_a = 2K/M_s$ – поле локальной магнитной анизотропии, $H_R = 2A/M_s R_c^2$ обменное корреляционное поле выше которого справедлив закон Акулова, а ниже реализуется степенная зависимость вида H^{-n} , с показателем, зависящим от размерности неоднородности анизотропии.

Типичные кривые намагничивания исходных порошков (Со₈₈Р₁₂)_{100-Х}/Си_Х и прессовок

• Исследование кривых приближения намагниченности к насыщению показало, что в области больших полей (в полях больше 5 кЭ) для всех величин *х* исследуемых исходных порошков и компактов $(Co_{88}P_{12})_{X}/Cu_{100-X}$ кривые намагничивания хорошо следуют закону Акулова ($\Delta M \sim H^{-2}$), а в меньших полях испытывают кроссовер ($\Delta M \sim H^{-0,5}$). Это позволило определить величину поля локальной анизотропии H_a и радиус ее пространственной корреляции R_c. Установлено, что ударно-волновое нагружение композиционных частиц в момент компактирования приводит к уменьшению значения поля локальной анизотропии с 3,8 КЭ до 3 КЭ, значение коэрцитивной силы практически не изменяется (H_c~200 Э).

- Кривая намагничивания для объемного образца (Со₈₈Р₁₂)₈₀/Си_{20.} Линией показан результат подгонки формулой (1).
- $H_a = 2K/M_s$ поле локальной магнитной анизотропии, $H_R = 2A/M_s R_c^2$ обменное корреляционное поле

Характеристики магнитной микроструктуры компактов (Co₈₈P₁₂)_{100-х} /Cu_x

Весовая доля меди, %	аН _а , КЭ	Н _R , КЭ	<аH _a >, Э	R _f , нм
0	2,1	6,2	82	55
20	0,9	2,3	60	70
40	1,4	3,1	130	45
50	0,8	1,4	140	47
70	0,8	1,5	120	45

В таблице представлены значения величин поля локальной анизотропии aH_a , корреляционного поля H_R , поля анизотропии стохастического домена $\langle aH_a \rangle$ и его размера R_f .

Заключение

Методом динамического компактирования получены объемные наноструктурированные композиционные материалы Со-Р/Си с таким же значением намагниченности насыщения, как и у исходного порошка. Как в исходных порошках, так и в компактах сплав Со₈₈Р₁₂ представляет собой гетерофазную систему, а, именно, смесь фаз с ГЦК и ГПУ ближним порядком. Методом корреляционной магнитометрии определены значения поля локальной анизотропи, поля анизотропии стохастического домена И его размера. Установлено, что ударно-волновое нагружение в процессе компактирования образцов вызывает уменьшение значения поля локальной анизотропии и величин коэрцитивной силы и ширины линии ФМР.