КОНЦЕПЦИЯ СТАНЦИИ «СТРУКТУРНАЯ ДИАГНОСТИКА» ИСТОЧНИКА СИНХРОТРОННОГО ИЗЛУЧЕНИЯ «СКИФ»

Захаров Б.А.^{1,2}, Винокуров З.С.^{1,2}, Ращенко С.В.^{1,2,3,4}, Шмаков А.Н.^{1,2}, Болдырева Е.В.^{1,2}, Громилов С.А.^{2,5}, Ларичев Ю.В.^{1,2}, Сухих А.С.^{2,5}, Цыбуля С.В.^{1,2}, Требушинин А.Е.², Зубавичус Я.В.^{1,2}, Ракшун Я.В.^{1,2,4}

¹Институт катализа им. Г.К. Борескова СО РАН

²Новосибирский государственный университет

³Институт геологии и минералогии им. В.С. Соболева СО РАН

⁴Институт ядерной физики им. Г.И. Будкера СО РАН

⁵Институт неорганической химии им. А.В. Николаева СО РАН

b.zakharov@yahoo.com

Экспериментальная станция предназначена для решения широкого спектра исследовательских и технологических задач, связанных с использованием методов рентгеновской дифракции. В основе концепции станции лежит реализация комплексного подхода к структурным исследованиям синтетических и природных объектов на основе наиболее полного набора экспериментальных методик, использующих уникальные преимущества современного источника СИ высокой яркости, передовых рентгенооптических решений и новейших систем детектирования, в том числе, отечественной разработки. Станция включает в себя секции «Дифрактометрия высокого разрешения», «Монокристальный РСА», «Исследования In Situ в условиях повышенных температур и различных газовых средах», «Малоугловое рентгеновское рассеяние».

Круг актуальных экспериментальных задач включает исследование фазового состава, локальной и электронной структуры и структурных превращений самых разнообразных веществ и материалов – катализаторов, минералов, функциональных и конструкционных материалов, материалов для энергетики и энергосбережения, для строительной индустрии, пигментов, фармацевтических материалов, а также материалов, используемых в технологиях двойного назначения. Реализованные на станции методы позволят проводить эксперименты с высоким угловым и пространственным разрешением, в условиях внешних воздействий In Situ и Operando, будут реализованы методы рентгеноструктурного анализа монокристаллов для сильно поглощающих и мелких (с характерным размером менее 10 мкм) объектов. Станция будет базой для дифракционных исследований наноразмерных, наноструктурированных и аморфных образцов, биополимеров, стекол и др. на супрамолекулярном уровне.

Общая схема распределения задач по секциям станции «Структурная диагностика» приведена в таблице (Таблица 1).

	Секция «Дифрактометрия высокого разрешения»	Секция «Исследования In Situ в условиях повышенных температур и	Секция «Моно- кристальный РСА»	Секция «Малоугловое рентгеновское рассеяние»
		различных газовых средах»		
Блок 1 «Материалы для водородной энергетики и твердотельных топливных элементов»	+	+	+	+
Блок 2 «Катализаторы для энергоэффективного катализа, нефтепереработки и экологических приложений»	+	+	+	+
Блок 3 «Керамические и высокоэнергетические материалы»	+	+	+	+

Таблица 1. Распределение задач по секциям станции «Структурная диагностика»

Блок 4 «Пленки»	+	_	_	+
Блок 5 «Системы с частично- разупорядоченной иерархической структурой: полимерные и углеродные материалы»	_	+	_	+
Блок 6 «Фармацевтические материалы»	+	+	+	+
Блок 7 «Монокристаллы»	_	_	+	_
Блок 8 «Структурная диагностика ультрадисперсных и наноструктурированных систем»	+	+	+	+

Для обеспечения максимального потока фотонов для текущей концепции станции в качестве вставного устройства на станции 1-2 предлагается использовать сверхпроводящий ондулятор параметрами представленными в таблице ниже и амплитудой поля основного режима 1.06 Тл (максимальная амплитуда – 1.2 Тл). Параметры сверхпроводящего ондулятора представлены в таблице (Таблица 2).

Номинальное магнитное поле, Тл	1.25
Период ондулятора, мм	15.6
Вертикальная апертура для пучка, мм	6
Горизонтальная апертура для пучка, мм	60
Межполюсный зазор, мм	8
Число периодов	128
Магнитная длина, мм	~1997
Длина магнита, мм	~2170
Длина между фланцами	~2840
Высота от пола, мм	2146
Ток в обмотке, А	500
Мощность излучения (B=1.25 T, I=0.4 A, E=3 ГэВ), кВт	7.18
Горизонтальный угол излучения, мрад	± 0.4

Таблица 2. Параметры сверхпроводящего ондулятора для Станции 1-2

Поскольку на смежных секциях будут эксплуатироваться высшие гармоники данного ондулятора, особое внимание должно быть уделено обеспечению фазовой ошибки и ошибки поля устройства в пределах 3° и 0.3%, соответственно.

На станции будет реализована схема работы с четырьмя независимыми секциями с использованием отведенных от основного пучка гармоник: «Исследования *In Situ* в условиях повышенных температур и различных газовых средах» – фиксированная энергия 32.5 кэВ, «Монокристальный РСА» – фиксированная энергия 22.5 кэВ, «Малоугловое рентгеновское рассеяние (МУРР)» – фиксированная энергия 12.5 кэВ и основная секция

«Дифрактометрия высокого разрешения» – фиксированная энергия 17.5 кэВ (основная), 27.5 кэВ и 7.5 кэВ в основном режиме работы вставного устройства.

Эффективное использование спектра вставного устройства предполагает возможность одновременного проведения на станции нескольких экспериментов путем распределения компонентов спектра СИ между различными секциями станции с помощью рентгеновской оптики. На станции «Структурная диагностика» планируется установка трёх алмазных монохроматоров, представляющих собой плоскопараллельные пластинки с ориентацией (111) толщиной около 100 мкм, которые будут отводить на боковые секции 5-ю (12.50 кэВ / 0.99 Å), 9-ю (22.50 кэВ / 0.55 Å) и 13-ю (32.50 кэВ / 0.38 Å) гармоники спектра вставного устройства под углами 28, 15 и 11° соответственно (Рисунок 1). Основным преимуществом такой схемы является возможность одновременного проведения экспериментов на всех четырех секциях станции в основном режиме работы ондулятора. Недостатком такого подхода является невозможность варьировать энергию излучения на боковых секциях, работа которых возможна только в основном режиме работы вставного устройства. Тем не менее, энергии отводимых пучков СИ в основном режиме выбраны наиболее оптимальные для методов, реализующихся на соответствующих секциях, и удовлетворяют требованиям заявленной научной программы Станции 1-2. Вместе с тем, остается возможность проведения экспериментов, требующих отличных от основного режима энергий, на основной секции 1-2-1, расположенной на прямом пучке СИ. В основном режиме работы вставного устройства все секции могут работать одновременно и независимо друг от друга. При наличии заявок, требующих проведения эксперимента в режиме сканирования по энергии, будет задействоваться в работе только основная секция станции.

Рисунок 1. Общая схема станции 1-2. На рисунке снизу показаны только оптический и экспериментальные хатчи. На рисунке сверху дополнительно показаны контрольные кабины

На рисунке выше (Рисунок 1) представлена принципиальная схема Станции 1-2. Внешний радиус соответствует «коридору» – буферной зоне, где не предполагается размещение научного оборудования. Два внутренних – условно кольцу накопителя и стене биозащиты, соответственно. Точки в экспериментальных хатчах – примерной области фокусировки излучения на образце.

Для всех секций станции первым оптическим элементом являются щели белого пучка, установленные на расстоянии 26 м в оптическом хатче станции 1-2 и служащие для первичного формирования пучка. Рисунок 2 показывает спектр излучения после этой щели (расчет спектра проведен для щели 1 × 1 мм²). При построении спектра учитываются функции пропускания алмазных окон, разделяющих вакуум накопителя и станции, а также влияние фазовой ошибки на интенсивность гармоник высокого порядка ондулятора [1].

Рисунок 2. Поток через площадку 1×1 мм2 на расстоянии 26 м от центра ондулятора для прямого пучка СИ с учетом падения потока из-за фазовой ошибки ондулятора (3°) и после прохождения алмазного окна толщиной 0.2 мм. Расчет проведен в Spectra [2]

Также для реализации экспериментов, требующих сканирования по энергии, будет реализована схема работы с выведенными из пучка монохроматорами боковых секций. В этом режиме возможна работа только основной секции. Рисунок 3 показывает спектр излучения для всех рабочих гармоник после выходной щели с учетом поправок на поглощение в алмазных окнах и фазовой ошибки.

Рисунок 3. Максимальный поток через площадку 1×1 мм² на расстоянии 26 м от центра ондулятора для всех гармоник ондулятора, с учетом падения потока из-за фазовой ошибки (3°) и после прохождения алмазного окна толщиной 0.2 мм в режиме сканирования по энергии. Расчет проведен в Spectra [2]

Секция 1-2-1

Оптическая схема основной секции станции 1-2-1 (Дифрактометрия высокого разрешения) представлена на рисунке ниже (Рисунок 4).

Рисунок 4. Оптическая схема секции 1-2-1. Две различные ветви в правой части рисунка соответствуют двум основным режимам работы секции (сверху). Кроме основных также будет использоваться режим с изменением поля ондулятора и выведением из пучка сплиттеров боковых секций (снизу)

На основной секции предполагается четыре основных режима работы:

- Основной режим без фокусировки пучка. В данном режиме используется дополнительный коллиматор из бериллиевых линз (31 м от источника). Варьирование размера параллельного пучка осуществляется с помощью щелей, расположенных перед образцом, с потерей интенсивности при обрезке пучка. Максимальный возможный размер пучка при этом 1.1 × 1.4 мм².
- 2) Основной режим с фокусировкой пучка. В данном режиме фокусировка пучка осуществляется с помощью CRL-конденсора, расположенного в оптическом хатче сразу после двухкристального монохроматора (41 м от источника). Этот режим позволяет получить пучок максимальной интенсивности без сильной потери разрешения размерами от 0.4 × 0.4 мм² до 0.05 × 0.02 мм².
- 3) Режим с перестройкой поля ондулятора без фокусировки пучка. В данном режиме возможна работа только основной секции. При этом перестройка энергии возможна во всем диапазоне от 6.5 до 35 кэВ (см. Рисунок 3), коллимация и управление размером пучка осуществляется аналогично пункту 1).
- Режим с перестройкой поля ондулятора с фокусировкой пучка. Аналогично пункту 2) с вариацией энергии входящего пучка.

В таблицах Таблица 3 и Таблица 4 приведены характеристики пучка для различных вариантов фокусировки.

Таблица 3. Параметры излучения в плоскости расположения образца для различных вариантов фокусировки (для кристаллов монохроматора и анализатора Si (111)) в схеме с высоким разрешением. Расчет параметров проведен с использованием интерфейса SHADOWOUI [3]

Типы и количество линз, CRL1_XZ_R500, CRL2_XZ_R500	Размер пятна излучения, FWHM ² , мкм ²	Полный поток, фот/с, (% от исходного пучка)	Плотность потока, фот/с/мм ²	Разрешение на 30°, FWHM, °
7, 13 (максимальный фокус)	50×24	9.4×10 ¹² (72%)	8.9×10 ¹⁵	0.0033
7, 10	144×171	9.8×10 ¹² (75%)	4.0×10 ¹⁴	0.0031
7, 5	342×419	1.07×10 ¹³ (82%)	7.7×10 ¹³	0.0027
7, 0	571×667	1.1×10 ¹³ (85%)	2.9×10 ¹³	0.0026
0, 0	1100×1440	1.3×10 ¹³ (100%)	8.0×10 ¹²	0.0047

Таблица 4. Параметры излучения в плоскости расположения образца для различных вариантов фокусировки Si (311) в схеме с высоким разрешением. Расчет параметров проведен с использованием интерфейса SHADOWOUI [3]

Типы и количество линз, CRL1_XZ_R500, CRL2_XZ_R500	Размер пятна излучения, FWHM ² , мкм ²	Полный поток, фот/с, (% от исходного пучка)	Плотность потока, фот/с/мм ²	Разрешение на 30° (Q = 4.6Å ⁻¹), FWHM, °
7, 13 (максимальный фокус)	49×24	1.8×10 ¹² (69%)	1.5×10 ¹⁵	0.0022
7, 10	144×171	1.9×10 ¹² (73%)	7.8×10 ¹³	0.0017
7, 5	342×419	2.1×10 ¹² (81%)	1.5×10 ¹³	0.001
7, 0	571×741	2.3×10 ¹² (88%)	5.4×10 ¹²	0.0005
0, 0	990×1380	2.6×10 ¹² (100%)	1.9×10^{12}	0.0008

Основным направлением работы секции 1-2-1 будет получение экспериментальных рентгенограмм поликристаллических материалов с высокими угловым разрешением и низким соотношением «сигнал-шум» в широком интервале углов дифракции за времена порядка нескольких минут при комнатной температуре и атмосферном давлении. В большинстве случаев образцы будут помещаться в тонкостенные кварцевые капилляры, и смена образцов будет осуществляться в автоматическом режиме. При необходимости капилляр с образцом может быть нагрет или охлажден потоком воздуха или азота в диапазоне температур от 77 К до ~1300 К. Кроме того, рентгенограммы образцов в режиме нагрева или охлаждения могут быть зарегистрированы однокоординатным детектором на базе сборки гибридных детекторов МҮТНЕN2 Х [4], установленных на том же дифрактометре, если состояние образца не предполагает использования высокого разрешения по углу дифракции, но условия эксперимента требуют умеренного (например, миллисекундного) разрешения по времени.

Проведение экспериментов в условиях высоких температур и реакционных сред будет обеспечено установкой на дифрактометр специализированных высокотемпературных рентгеновских камер-реакторов. Эксперименты могут быть выполнены при температурах до 1500-1700 К в нейтральных, окислительных или восстановительных атмосферах с контролем состава газовой среды на входе и на выходе камеры-реактора.

Секция 1-2-2

Оптическая схема секции 1-2-2 (Исследования *In Situ* в условиях повышенных температур и различных газовых средах) представлена на рисунке ниже (Рисунок 5). Пучок, используемый на секции 1-2-2, проходит последовательно через полупрозрачные алмазные монохроматоры-сплиттеры секций 1-2-4 (27 м от источника, 5-я гармоника, 12.5 кэВ), 1-2-3 (30 м от источника, 9-я гармоника, 22.5 кэВ) и коллиматорные линзы секции 1-2-1 (31 м). Расчетные параметры источника излучения (Гаусс) для 13-й, рабочей гармоники данной секции составляют: размер – 38.9 мкм (горизонтальный) и 6.8 мкм (вертикальный), и расходимость – 5.6 мкрад (горизонтальный) и 10.5 мкрад (вертикальный). Плотность потока фотонов для этой энергии через щели на входе в оптический хатч составляет 8.3 × 10¹² фот/с/0.1%эн.шир.

Рисунок 5. Оптическая схема секции 1-2-2. Три различные ветви в правой части рисунка соответствуют трем возможным режимам работы секции

После монохроматизации возможно дальнейшее формирование пучка тремя способами, в зависимости от требований эксперимента. На рисунке (Рисунок 5) этим трем способам соответствуют три ветви в правой части рисунка:

- Режим без фокусировки пучка. В данном режиме используется пучок с расходимостью 7.5×16.4 мкрад² (FWHM²), максимальный размер пучка в точке размещения образца составляет 0.69 × 1.35 мм² (FWHM²). Варьирование размера пучка осуществляется с помощью щелей, расположенных перед образцом, с потерей интенсивности при обрезке пучка.
- 2) Режим со стандартной фокусировкой пучка. В данном режиме фокусировка пучка осуществляется с помощью CRL-конденсора, расположенного в оптическом хатче, (37 м от источника) в связке с фокусирующими CRL, расположенными в экспериментальном хатче (68 м от источника). Этот режим позволит получить пучок максимальной интенсивности размерами от 0.1 × 0.1 мм² до 0.01 × 0.01 мм².
- 3) Режим параллельного пучка. В данном режиме используется только CRL-конденсор. В этом режиме расходимость пучка в области расположения образца (70 м от источника) находится в пределах 10 × 10 мкрад² и размер облучаемой области составляет 0.4 × 0.4 мм² до 0.1 × 0.1 мм²
- 4) Расчетные параметры пучка излучения в плоскости расположения образца (70 м) для разных вариантов фокусировки представлены в таблице ниже (Таблица 5). В данном расчете использовались линзы CRL1_XZ_R500, CRL1_Z_R500 – 2D и 1D параболические линзы конденсора (37 м) с радиусом кривизны 500 мкм и эффективной апертурой 1.4 мм, CRL2_XZ_R50, CRL2_X_R200 – 2D и 1D параболические короткофокусные линзы (68 м) с радиусом кривизны 50 мкм и 200 мкм, и эффективной апертурой 0.4 мм. Линзы с маркировкой XZ используются для фокусировки пучку как в вертикальной, так и в горизонтальной плоскостях, а с маркировкой X/Z – для фокусировки только в горизонтальной/вертикальной плоскостях. Параметры линз брались с веб-сайта [5].

Таблица 5. Пара	метры излучения н	в плоскости располо	ожения образца для	различных ва	ариантов	фокусировки.
	Расчет параметро	в проведен с исполь	зованием интерфей	ica SHADOWO	OUI [3]	

Типы и количество линз, CRL1_XZ_R500, CRL1_Z_R500, CRL2_XZ_R50, CRL2_X_R200	Размер пятна излучения, FWHM ² , мкм ²	Полный поток, фот/с, (% от исходного пучка)	Плотность потока, фот/с/мм ²	Расходимость на образце, FWHM ² , мрад ²
22, 6, 30, 10 (максимальный фокус)	7.8×6.2	1.7×10 ¹¹ (44%)	3.5×10 ¹⁵	0.09×0.1
22, 6, 22, 10	55×69	1.8×10 ¹¹ (47%)	4.7×10 ¹³	0.08×0.08
22, 6, 14, 10	115×140	2.0×10 ¹¹ (51%)	1.2×10^{13}	0.05×0.06
16, 10, 0, 0	375×390	3.1×10 ¹¹ (79%)	2.1×10^{12}	0.002×0.009
0, 10, 0, 0	685×910	3.6×10 ¹¹ (92%)	5.8×10 ¹¹	0.007×0.005

В качестве дополнительного оборудования для проведения *In Situ* исследований будут использоваться потоковый нагреватель (до 1000°С), система подачи газовой смеси и масс-спектрометр для контроля газовой фазы. Также планируется использование уникальных ячеек собственной разработки, например, для исследований топливных элементов в процессе работы или каталитических процессов.

Секция 1-2-3

Оптическая схема секции 1-2-3 (Монокристальный РСА) представлена на рисунке ниже (Рисунок 6). Пучок, используемый на секции 1-2-3, сначала проходит через полупрозрачный алмазный монохроматор-сплиттер, установленный на расстоянии 27 м от источника, отводящий на боковую секцию МУРР 5-ю (12.5 кэВ / 0.99 Å) гармонику спектра вставного устройства под углом 28°. Следующим полупрозрачным монохроматором, установленным на расстоянии 30 м от источника отводится на боковую секцию 1-2-3 9-я гармоника с энергией 22.5 кэВ ($\lambda = 0.5516$ Å). Расчетные параметры источника излучения (Гаусс) для данной гармоники составляют: размер – 38.9 мкм (горизонтальный) и 6.9 мкм (вертикальный), и расходимость – 6.8 мкрад (горизонтальный) и 10.6 мкрад

(вертикальный). Плотность потока фотонов для этой энергии через щели на входе в оптический хатч составляет 5.3 × 10¹³ фот/с/0.1%эн.шир.

Рисунок 6. Оптическая схема секции 1-2-3. Три различные ветви в правой части рисунка соответствуют трем возможным режимам работы секции

После монохроматизации возможно дальнейшее формирование пучка тремя способами, в зависимости от требований эксперимента. На рисунке (Рисунок 6) этим трем способам соответствуют три ветви в правой части рисунка:

- Режим без фокусировки пучка. В данном режиме используется пучок с естественной расходимостью, максимальный размер пучка в точке размещения образца составляет 1.5 × 0.9 мм² (FWHM²). Варьирование размера пучка осуществляется с помощью щелей, расположенных перед образцом, с потерей интенсивности при обрезке пучка.
- 2) Режим со стандартной фокусировкой пучка. В данном режиме фокусировка пучка осуществляется с помощью CRL-конденсора, расположенного в оптическом хатче, (31 м от источника) в связке с фокусирующими CRL, расположенными в экспериментальном хатче (58 м от источника). Этот режим позволит получить пучок максимальной интенсивности размерами от 0.4 × 0.4 мм² до 0.01 × 0.01 мм².
- 3) Режим максимальной фокусировки. В данном режиме достигается минимальный размер пучка 0.001 × 0.001 мм² с использованием только фокусирующих CRL, расположенных в экспериментальном хатче (58 м от источника). По сравнению с режимом (2) часть интенсивности при этом теряется из-за ограниченной апертуры линз.

Расчетные параметры пучка излучения в плоскости расположения образца (58.5 м) для разных вариантов фокусировки представлены в таблице ниже (Таблица 6). В данном расчете использовались линзы CRL1_XZ_R500, CRL1_Z_R500 – 2D и 1D параболические линзы конденсора (31 м) с радиусом кривизны 500 мкм и эффективной апертурой 1.4 мм, CRL2_XZ_R50, CRL2_X_R200 – 2D и 1D параболические короткофокусные линзы (58 м) с радиусом кривизны 50 мкм и 200 мкм, и эффективной апертурой 0.4 мм. Линзы с маркировкой XZ используются для фокусировки пучку как в вертикальной, так и в горизонтальной плоскостях, а с маркировкой X – для фокусировки только в вертикальной плоскости. Параметры линз для расчета брались с веб-сайта [5].

Использование такого набора оптики позволит исследовать широкий спектр монокристаллических образцов – как микрокристаллы, так и кристаллы «стандартных размеров», а также проводить картирование образца, например, при исследовании кристаллов-включений или исследовании нескольких кристаллов, помещенных в одну камеру – например, ячейку с алмазными наковальнями.

Таблица 6. Параметры излучения в плоскости расположения образца для различных вариантов фокусировки. Расчет параметров проведен с использованием интерфейса SHADOWOUI [3]

Типы и количество линз, CRL1_XZ_R500, CRL1_Z_R500, CRL2_XZ_R50, CRL2_X_R200	Размер пятна излучения, FWHM ² , мкм ²	Полный поток, фот/с, (% от исходного пучка)	Плотность потока, фот/с/мм ²	Расходимость на образце, FWHM ² , мрад ²
0, 0, 75, 1 (максимальный фокус)	0.82×0.81	10 ¹¹ (3%)	1.6×10 ¹⁷	0.4×0.4
19, 2, 68, 1	12×9	1.2×10 ¹² (40%)	1.1×10^{16}	0.29×0.29
19, 2, 50, 1	55×53	1.3×10 ¹² (43%)	1.3×10 ¹⁵	0.23×0.23
19, 2, 32, 1	105×100	1.6×10 ¹² (53%)	1.5×10 ¹⁴	0.16×0.16
19, 2, 0, 0	215×219	2.3×10 ¹² (77%)	4.9×10 ¹³	0.016×0.022
11, 4, 0, 0	484×518	2.5×10 ¹² (83%)	10 ¹³	0.003×0.006
2, 7, 0, 0	838×855	2.7×10 ¹² (90%)	3.7×10 ¹²	0.0013×0.006

На секции планируется использование дополнительного оборудования в системе окружения образца. Для контроля температуры образца будут использоваться потоковые гелиевые и азотные криостаты (например, Oxford Cryosystems Cryostream 800 и Agilent Helijet). Использование таких криостатов позволит варьировать температуру образца в пределах 80-400 К и 15-90 К соответственно. Для исследования структур кристаллов при повышенных температурах (до 1000 К) планируется использование трубчатых потоковых нагревателей (например, FMB Oxford Gas Blower). При исследованиях в условиях высоких давлений, а также при исследовании превращений в кристаллах планируется использование трубчатых потоковых нагревателей (например, FMB Oxford Gas Blower). При исследованиях в условиях высоких давлений, а также при исследовании превращений в кристаллах планируется использование трубчатых потоковых нагревателей (например, FMB Oxford Gas Blower). При исследованиях в условиях высоких давлений, а также при исследовании превращений в кристаллах планируется использование трубчатых потоковых нагревателей (например, FMB Oxford Gas Blower). При исследованиях в условиях высоких давлений, а также при исследовании превращений в кристаллах планируется использование онлайн-спектрометра КР, который позволит записывать колебательные спектры для образца *In Situ* непосредственно на дифрактометре, не снимая образец с гониометрической головки. Секция «Монокристальная дифракция» предполагает использование излучения СИ с $\lambda = 0.5516$ Å, что существенно меньше длины волны стандартных рентгеновских трубок с молибденовым анодом ($\lambda = 0.7093$ Å), используемых в лабораторных дифрактометрах. Это позволит проводить эксперименты в закрытых ячейках (алмазных наковальнях, температурных камерах, реакторах и пр.), а также получать дифракционные картины для сильнопоглощающих образцов. Для визуального отбора монокристаллов будут использованы современные оптические (в т.ч. поляризационные) микроскопы. Исследования *In Situ* будут также проводиться при различных внешних физических

Секция 1-2-4

Оптическая схема секции 1-2-4 (Малоугловое рентгеновское рассеяние) представлена на рисунке ниже (Рисунок 7). Пучок, используемый на секции 1-2-4, отводится на секцию первым алмазным монохроматоромсплиттером (27 м от источника, 5-я гармоника, 12.5 кэВ), расположенным сразу после щелей для белого пучка (26 м) на выходе с фронт-энда. Расчетные параметры источника излучения (Гаусс) для 5-й, рабочей гармоники данной секции составляют: размер – 39 мкм (горизонтальный) и 6.9 мкм (вертикальный), и расходимость – 11.0 мкрад (горизонтальная) и 10.9 мкрад (вертикальная). Плотность потока фотонов для этой энергии через щели на входе в оптический хатч составляет 3.9 × 10¹⁴ фот/с/0.1%эн.шир.

Рисунок 7. Оптическая схема секции 1-2-4. Две различные ветви в правой части рисунка соответствуют двум режимам работы секции

После монохроматизации возможно дальнейшее формирование пучка двумя способами, в зависимости от требований эксперимента. На рисунке (Рисунок 7) этим двум способам соответствуют две ветви в правой части рисунка:

- Режим без фокусировки пучка. В данном режиме используется пучок с расходимостью 25×25 мкрад² (FWHM²), который после сплиттера формируется сменной круглой апертурой (31 м), вторая апертура (52 м) ставится перед образцом (53 м). Используется если нужен большой размер пучка на образце.
- 2) Режим с фокусировкой пучка на плоскости детектора. В данном режиме фокусировка пучка осуществляется с помощью бериллиевых линз CRL, расположенных в оптическом хатче, (28 м от источника). Фокусировка при этом осуществляется на плоскости детектора (63 м) для достижения минимального угла по 20. Этот режим позволит получать малоугловые спектры максимальной интенсивности с q вплоть до 10⁻⁴ Å⁻¹.

Образец будет располагаться на расстоянии 53 м от источника излучения. В качестве дифрактометра на станции предполагается использовать стандартный модуль Xeuss 3.0 (длина 10 метров) оборудованный двумя детекторами (аналогами Eiger2 X 4M и PILATUS3 X 100K-M), расположенными на разном расстоянии от образца для одновременной регистрации SAXS и WAXS.

Модуль Xeuss 3.0 оборудован форвакуумными насосами для откачки воздуха в камере образца. Предусмотрен роботизированный автосэмплер для автоматической подачи жидких образцов в капилляр и промывки капилляра после съемок. Для твердых образцов предусмотрена специальная кассета, позволяющая загружать сразу до двух десятков образцов для непрерывной съемки. Для вязких и пастообразных образцов предусмотрена специальная кювета. В случае специальных экспериментов подача образцов будет производиться вручную. Модуль Xeuss 3.0 также будет оборудован приставкой GISAXS позволяющей анализировать пленки и приставкой позволяющей изучать растяжение образцов с нагревом и охлаждением. Также планируется использовать приставку USAXS для анализа образцов, содержащих очень крупные частицы. Из-за дополнительных манипуляций по монтажу/демонтажу USAXS модуля загрузка образцов в таких случаях также будет проводится вручную. Также при необходимости специальных экспериментов предусмотрен монтаж в камеру реакционной приставки, позволяющей проводить эксперименты с нагревом образцов и подачей газов для проведения реакций.

Благодарность

Работа выполнена в рамках государственного задания ИК СО РАН (проект АААА-А19-119020890025-3).

Список литературы

- 1. Walker R.P. Phase errors and their effect on undulator radiation properties // Physical Review Special Topics Accelerators and Beams. 2013. Vol. 16, № 1. P. 010704.
- Tanaka T. Universal representation of undulator phase errors // Physical Review Accelerators and Beams. 2018. Vol. 21, № 11. P. 110704.
- 3. Rebuffi L., Sánchez del Río M. ShadowOui: a new visual environment for X-ray optics and synchrotron beamline simulations // Journal of Synchrotron Radiation. 2016. Vol. 23, № 6. P. 1357–1367.
- 4. MYTHEN2 X for Synchrotron [Electronic resource]. URL: https://www.dectris.com/products/mythen2/mythen2-x-for-synchrotron/.
- 5. RXOPTICS GMBH [Electronic resource]. URL: www.rxoptics.de.