

ИНСТИТУТ ФИЗИКИ им. Л.В. КИРЕНСКОГО Сибирского отделения Российской академии наук ФИЦ КНЦ СО РАН

0.0000

⁵⁷Fe MÖSSBAUER SPECTROSCOPY OF Fe_xMn_{1-x}S AT LOW TEMPERATURE

<u>G. M. Abramova^{1*}</u>, O. A. Bayukov¹, Yu. V. Knyazev¹, S. P. Kubrin²

¹Kirensky Institute of Physics, Federal Research Center KSC SB RAS,

Krasnoyarsk, Russia

²Southern Federal University, Rostov-na-Donu, Russia

* <u>agm@iph.krasn.ru</u>

Изучено влияние химического давления на спиновое состояние ионов Fe²⁺ в монокристаллах Fe_xMn_{1-x}S (0.12≤x≤0.29) методом мёссбауэровской спектроскопии в интервале 4.2-300 К. Установлено, что замещение ионов марганца Mn²⁺ ян-теллеровскими катионами железа приводит к сильному росту локальных искажений октаэдров при сохранении кубической структуры монокристаллов. В полупроводниковых образцах ионы Fe²⁺ имеют высокоспиновое состояние в антиферромагнитном и парамагнитном состояниях твердых растворов. В образцах, относящихся к металлической области фазовой диаграммы системы, наблюдается сосуществование высокоспинового и низкоспинового состояний ионов Fe²⁺. Это порождает лигандные поля пониженной симметрии (ниже кубической), что, наряду со спин-орбитальной связью, приводит к расщеплению орбитальной части состояния ${}^{5}T_{2}$ (${}^{4}t_{2g}{}^{2}e_{g}$). Спиновое вырождение состояния ${}^{5}T_{2}$ снимается, и в образцах x=0.25, 0.29 формируется низкоспиновое ${}^{1}A_{1g}$

 $({}^{6}t_{2g}{}^{0}e_{g})$

Спиновый кроссовер возможен для переходных ионов с конфигурациями d⁴, d⁵, d⁶ и d⁷. Из ионов, которые демонстрируют типичное поведение спинового кроссовера, наибольшее число примеров найдено для конфигурации d⁶ [1], и большое количество из них представляет катион Fe²⁺, что удобно с точки зрения применения мёссбауэровской спектроскопии [2-12]. Ещё одним катионом с электронной конфигурацией d⁶ является Co³⁺[13-16]. Катион d⁶ относительно легко получить в низкоспиновом состоянии - энергия спинового спаривания меньше, чем у сравнимых ионов [17], кроме того, такая конфигурация имеет максимальную энергию стабилизации поля лигандов, поскольку LS состояние катиона обладает сферической симметрией [18].

До недавнего времени большинство работ по изучению спиновых кроссоверов под давлением на катионах Fe²⁺ было выполнено на молекулярных комплексах [19]. Это связано с тем, что, для наблюдения перехода HS -> LS в кристаллических соединениях необходимы огромные гидростатические давления. Изучение спин-кроссоверных переходов при воздействии внешнего давления в кристаллических образцах стало возможным благодаря применению алмазных наковален, которые позволяют достигать давлений до сотен ГПа [11], а в качестве метода измерения — электронную или мессбауэровскую спектроскопию [2-5]. Спиновые кроссоверы в оксидных веществах, как правило, характеризуются скачкообразным изменением сверхтонких параметров [8-12]. В сульфидных соединениях (в отличие от оксидных соединений) явление спинового кроссовера может осуществляться в широком диапазоне гидростатических давлений и сопровождаться одновременным сосуществованием магнитных ионов с различными спиновыми состояниями. Одним из первых кристаллических сульфидных веществ, в котором обнаружен спиновый кроссовер под воздействием гидростатического давления был MnS₂ со структурой пирита, обогащённый ⁵⁷Fe [20]. Авторами показано, что спиновый кроссовер начинается при давлении 4 ГПа и заканчивается при 12 ГПа.

Низкотемпературные спектры магнитоупорядоченного состояния изучаемых веществ представляют собой ассиметричные плохо разрешённые секстеты, что указывает на сильные локальные искажения октаэдров и большую величину ГЭП. Выраженность искажений октаэдров в низкотемпературном состоянии Fe_xMn_{1-x}S (0.12≤x≤0.29) отражается в характерных значениях квадрупольного смещения ε (Таб.1).

Таблица I. Сверхтонкие параметры твёрдых растворов Fe_xMn_{1-x}S (x=0.12-0.29) при 4 К. IS – химический изомерный сдвиг относительно α -Fe (±0.010 mm/s), QS – квадрупольное смещение (±0.010 mm/s), H – сверхтонкое поле (±2.0 kOe), θ - полярный угол **H** относительно ГЭП ($\pm 2.0^{\circ}$), ϕ - азимутальный угол **H** относительно ГЭП ($\pm 2.0^{\circ}$), G – ширина мёссбауэровской линии на полувысоте ($\pm 0.010 \text{ mm/s}$), A – относительная доля в спектре ($\pm 2.5 \%$).

Component	IS, mm/s	QS, mm/s	H, kOe	$\theta,^{\circ}$	$\phi,^{\circ}$	$G, \mathrm{mm/s}$	A, %
x=0.12							
S1	1.032	2.83	56	21	0	0.44	33
S2	1.023	2.57	87	21	0	0.44	67
x=0.18		1					
S1	1.045	2.70	59	22	0	0.40	26
S2	1.005	2.78	84	22	0	0.40	37
S3	0.985	2.67	91	22	0	0.40	37
x=0.25							
S1	1.070	3.08	58	24	0	0.36	16
S2	1.010	2.73	81	24	0	0.36	41
S3	0.970	2.80	95	24	0	0.36	37
D1	0.244	0.34	-	-	-	0.25	6
x=0.29							
S1	1.061	2.57	55	33	0	0.39	8
S2	1.041	2.89	75	33	0	0.39	44
S3	1.021	2.84	93	33	0	0.39	42
D1	0.340	0.67	-	-		0.25	6

x (a.u.)

Рис.2. Концентрационные зависимости химического сдвига IS для основной компоненты спектра, постоянной решетки а и энергии активации проводимости E_a парамагнитного состояния для образцов Fe_XMn_{1-X}S (0.12≤X≤0.29).

Из рис. 2 видно, что сжатие решётки Fe_XMn_{1-X}S при X>0.18 сопровождается достаточно резким уменьшением проводимости образцов, что должно оказывать сильное влияние на величину хим. сдвига благодаря уменьшению электронной плотности на ядрах железа. Однако мы видим, что величина хим. сдвига коррелирует с параметром элементарной ячейки. Это указывает на превалирующее влияние замещения на сверхтонкие параметры.

[1] P. Gütlich, H. A. Goodwin, Spin Crossover in Transition Metal Compounds (vol. 1), Springer-Verlag, Berlin Heidelberg, New York (2004) [2] D. C. Fisher, H. G. Drickamer, J. Chem. Phys. 54(11), 4825-4837 (1971) [3] A.H. Ewald, R. L. Martin, E. Sinn, A. H. White, Inorg. Chem. 8(9), 1837-1846 (1969) [4] L. Sacconi, J. R. Ferraro, Inorg. Chim. Acta 9, 49-50 (1974) [5] R. J. Butcher, J. R. Ferraro, E. Sinn, Inorg. Chem. 15(9), 2077-2079 (1976) [6] E. Meissner, H. Koppen, H. Spiering, P. Gütlich, Chem. Phys. Lett., 95(2), 163-166 (1983) [7] E. König, G. Ritter, J. Waigel, H. A. Goodwin, J. Chem. Phys., 83(6), 3055-3061 (1985) [8] I. S. Lyubutin, A. G. Gavriliuk, K. V. Frolov et al., JETP letters, 90(9), 681-686 (2009) [9] I. S. Lyubutin and S. G Ovchinnikov, J. Magn. Magn. Mater., 324(21), 3538-3541 (2012) [10] I. S. Lyubutin, A. G. Gavriliuk, V. V. Struzhkin et al., JETP letters, 84(9), 518-523 (2007)

[11] E. Bykova, L. Dubrovinsky, N. Dubrovinskaia et al., Nature Com., 7(1), 1-6 (2016) [12] I. S. Lyubutin, A. G. Gavriliuk, I.A. Trojan, R. A. Sadykov, JETP Letters, 82(11), 702-707 (2005) [13] Yu. S. Orlov, L. A. Solovyov, V. A. Dudnikov, et al., Phys. Rev. B, 88(23), 235105 (2013) [14] S.G. Ovchinnikov, Yu. S. Orlov, V. A. Dudnikov, et al., J. Magn. Magn. Mater. 383, 162-165 (2015) [15] A. B. Gaspar, M. Seredyuk, Coord. Chem. Rev., 268, 41-58 (2014) [16] G. Navon, W. Klaeui, Inorg. Chem., 23(17), 2722-2725 (1984) [17] E. König, S. Kremer, Theor. Chim. Acta, 23(1), 12-20 (1971) [18] F. J. Berry, Chemical bonding and spectroscopy in mineral chemistry, CHAPMAN AND HALL, London, New York (1985) [19] G. M. Bancroft, M. J. Mays, B. E. Prater, J. Chem. Soc. A: Inorg., Phys., Theor., 956-968 (1970) [20] C. B. Bargeron, M. Avinor, H. G. Drickamer, Inorg. Chem., 10(7), 1338-1339 (1971)