#### ВЛИЯНИЕ ИСХОДНОГО СОСТОЯНИЯ И УСЛОВИЙ ТЕРМООБРАБОТКИ НА СТРУКТУРУ БЫСТРОЗАКАЛЕННОГО СПЛАВА TiNiCu

<u>Дядечко А.А.</u>, Шеляков А.В., Ситников Н.Н., Хабибуллина И.А., Бородако К.А.

Национальный исследовательский ядерный университет МИФИ, Москва, Россия

Работа выполнена за счет гранта РНФ (проект №19-12-00327)

#### Получение сплава TiNiCu методом быстрой закалки из жидкого состояния



- 1 корпус камеры;
- 2-кварцевый тигель;
- 3 термопара;
- 4 высокочастотный индуктор;
- 5 расплав;
- 6-закалочный медный диск;
- 7 лентосъемник;
- 8-быстрозакаленная лента.

Схема установки для получения лент методом быстрой закалки из расплава



Внешний вид получаемой ленты в исходном состоянии

В качестве материала был выбран сплав квазибинарной системы TiNi–TiCu с содержанием меди 25 ат. %. Слитки сплава Ti<sub>50</sub>Ni<sub>25</sub>Cu<sub>25</sub> расплавлялись токами высокой частоты в кварцевом тигле в атмосфере гелия, затем расплав экструдировался через узкое сопло в тигле на поверхность быстро вращающегося медного диска, затвердевая в виде тонкой ленты.

Оценка скорости охлаждения расплава проводилась по выражению:

V = 2π·R·n·(Tm–Tg)/L, где:

Tm и Tg – температуры плавления и стеклования;

- R радиус закалочного диска (200 мм);
- n скорость вращения диска (об/мин);
- L размер зоны столкновения струи

расплава с поверхностью барабана (4 мм).

Для дальнейших исследований была выбрана быстрозакаленная лента со средней толщиной 28 мкм и шириной около 1,5 мм, полученная со скоростью охлаждения около 8,5·10<sup>5</sup> К/с.

# Исследование структуры быстрозакаленной ленты из сплава методами СЭМ и ПЭМ



СЭМ-изображение поперечного сечения слоистого аморфнокристаллического композита из сплава Ti<sub>50</sub>Ni<sub>25</sub>Cu<sub>25</sub>



ПЭМ-изображения кристаллического (а, б) и аморфного (в) слоёв с соответствующими им электронограммами

Электронно-микроскопические исследования В сканирующем электронном микроскопе (СЭМ) поперечного сечения лент выявили слоистую аморфно-кристаллическую структуру резкой С границей между аморфным (с контактной стороны) и кристаллическим слоями без заметной переходной 30НЫ, а также показали, ЧТО кристаллический слой имеет столбчатую структуру.

> Исследование просвечивающем В электронном микроскопе (ПЭМ) позволило установить, что в зернах наблюдается кристаллического слоя характерная ДЛЯ мартенсита пластинчатая структура СО средним 30-80 пластин размером нм, а микродифракционная картина ромбического соответствует фазе мартенсита В19. На ПЭМ-изображениях наблюдался контактной стороны типичный аморфной фазы ДЛЯ абсорбционный ультрадисперсный контраст.

### Получение аморфной ленты методом электрохимической полировки



цвет) и после ЭХП (черный цвет) с контактной и неконтактной поверхности



СЭМ-изображение поперечного сечения ленты после ЭХП

На рентгенограмме неконтактной стороны исходной ленты наблюдаются ярко выраженные дифракционные пики как мартенситной фазы В19, так и аустенитной фазы В2, а также проявляется след от аморфного «гало», что указывает на небольшую толщину кристаллического слоя.

Для получения полностью аморфной ленты проводилось удаление кристаллического слоя при помощи электрохимической полировки (ЭХП) в течение 12 мин при напряжении 5 В.

После ЭХП на рентгенограммах неконтактной поверхности ленты присутствуют пики малой интенсивности от мартенситной фазы, вклад в которые могут давать единичные кристаллы, а с контактной стороны ленты пики отсутствуют. СЭМ-изображение поперечного сечения ленты показало отсутствие кристаллического слоя и достаточно однородную по сечению структуру.

#### Кристаллизация аморфных лент



Внешний вид исследуемых образцов, полученных с помощью различных способов термообработки

$$J(\Delta t) = \frac{1}{\sqrt{\Delta t}} \sqrt{C \cdot \Delta T \frac{\rho_V}{\rho}}$$
(1)

Кристаллизацию аморфного состояния осуществляли двумя способами:

1. Изотермическая термообработка (ИТО) проводилась по стандартной методике в муфельной печи при 500°С со временем выдержки 300 с.

2. Электроимпульсная обработка (ЭТО) выполнялась пропусканием через образец одиночного импульса электрического тока с варьируемой длительностью в диапазоне от 1 до 5000 мс. Для обеспечения тепловой энергии, необходимой для нагрева сплава до температуры кристаллизации, использовалось полученное в работе соотношение (1), связывающее плотность тока J и длительность Δt импульса тока.

где ρ<sub>V</sub> – удельная плотность аморфного сплава (6,5·10<sup>-6</sup> кг/мм<sup>3</sup>), ρ – удельное электросопротивление (ρ= 0,0023 Ом·мм), С – удельная теплоемкость (С=500 Дж/(кг·К)), ΔT – температурный интервал от исходной температуры до температуры кристаллизации (от 20 до 500 °C).

# Микроструктура образцов после изотермической кристаллизации



Микроструктура поперечного сечения ленты, подвергнутой ИТО в исходном состоянии (а) и после ЭХП (б)

Установлено, что ИТО исходной ленты приводит к формированию в ленте биморфных кристаллических состоящих рекристаллизованного структур, ИЗ кристаллического слоя (с неконтактной (свободной) стороны ленты) И кристаллического слоя, аморфной сформированного ИЗ части ленты. Кристаллический слой со свободной стороны сохраняет столбчатую структуру И характеризуется преимущественно одинаковой толщиной, а граница кристаллами, сформированными раздела с И3 внутренней части ленты, является ровной и чётко определённой. Рекристаллизованный кристаллический слой после ИТО имеет среднюю толщину 5-6 мкм, а до ИТО 2,5-3 мкм, что говорит о росте кристаллического слоя в процессе термообработки.

В образце, термообработанном после ЭХП, поверхностные столбчатые кристаллы практически не наблюдаются, а кристаллическая структура в целом характеризуется однородным распределением субмикронных кристаллов.

# Микроструктура образцов после электроимпульсной кристаллизации



Микроструктура поперечного сечения лент после ЭТО (5000 мс, 10 мс, 1мс)

Воздействие на аморфную ленту импульсом электрического тока (ЭТО) существенно изменяет характер кристаллообразования. Структура лент в поперечном сечении характеризуется неоднородным распределением кристаллов: вблизи поверхностей ленты присутствуют столбчатые кристаллы, а в объеме ленты наблюдаются единичные или сгруппированные крупные кристаллы. Столбчатые кристаллы с обеих сторон ленты прорастают внутрь на разную глубину, при этом формируется неровная граница раздела с кристаллами из внутренней части. При ЭТО длительностью 10 мс и меньше скорость роста столбчатых кристаллов от поверхностей ленты начинает превосходить скорость образования и роста кристаллов из внутренней части ленты. В поперечном сечении таких образцов наблюдаются области, в которых столбчатые кристаллы соприкасаются в центральной части ленты, при этом между ними формируется ровная граница раздела с контактной стороны ленты имеют характерные размеры 1-2 мкм.

### Рентгеноструктурные исследования термообработанных образцов



Рентгенограммы образцов с контактной (а) и свободной (б) сторон ленты после термообработки (рефлексы от фазы B19)

Данные рентгеноструктурных исследований подтвердили, что ИТО и ЭТО приводят к кристаллизации аморфного состояния, при этом после ЭТО в сравнении с ИТО не наблюдается кардинальных изменений в расположении кристаллографических рефлексов. Обращает на себя внимание тот факт, что в процессе термообработки аморфной ленты с разных её сторон формируются кристаллические структуры с различными кристаллографическими ориентациями. На рентгенограммах со свободной поверхности ленты повторяется нехарактерное расположение наиболее интенсивных рефлексов фазы В19 в области 58-65 градусов, что свидетельствует о сохранении после термообработки «эффекта текстурированности» от исходного поверхностного кристаллического слоя, который мог быть локально не до конца удалён или остались напряжения в области его границы с аморфной частью.

### Рентгеноструктурные исследования термообработанных образцов

Дополнительно была получена серия лент, обработанных ЭХП с длительностью 20 минут и подвергнутых стандартной ИТО и ЭТО. На рентгенограммах со свободной стороны ленты не наблюдается пиков, свидетельствующих о повторении структурной морфологии и текстурированности исходного поверхностного кристаллического слоя. Полученные данные свидетельствуют о том, что при полном удалении исходного поверхностного слоя при ЭТО от обеих поверхностей ленты формируется структура столбчатых кристаллов с одинаковой кристаллографической ориентацией.



Рентгенограммы образцов с контактной (а) и свободной (б) сторон ленты после ЭХП 20 мин и термообработки

#### Заключение

Сплав квазибинарной системы TiNi-TiCu с содержанием меди 25 ат.% получен методом быстрой закалки из расплава в виде слоистой аморфно-кристаллической ленты. С помощью электроимпульсной термообработки (ЭТО) в сплаве получены новые структурные состояния. ЭТО со временем воздействия менее 5 с приводит к значительному изменению формируемой кристаллической структуры по сравнению со структурой, полученной при стандартной изотермической термообработке (ИТО) в течение 300 с при температуре 500°С.

1. После ЭТО микроструктура сплавов в поперечном сечении имеет неоднородное распределение кристаллов по толщине ленты: вблизи поверхностей ленты формируется структура из столбчатых кристаллов, а в объеме ленты присутствуют единичные или сгруппированные крупные кристаллы. Наблюдаемые столбчатые кристаллы от поверхности уходят вглубь ленты до кристаллов, сформированных в объёме ленты, некоторая часть столбчатых кристаллов соприкасаются по центру ленты, при этом формируется однородная граница.

2. Уменьшение времени электроимпульсного воздействия до 1 мс приводит к росту доли столбчатых кристаллов, увеличению их высоты и уменьшению их ширины.

3. Столбчатые кристаллы, растущие со свободной стороны ленты от исходного поверхностного кристаллического слоя, повторяют его структурную морфологию и текстурированность.

4. Полное удаление поверхностного кристаллического слоя с помощью метода электрохимической полировки приводит к тому, что в процессе ЭТО от обеих поверхностей ленты формируется структура столбчатых кристаллов с одинаковой кристаллографической ориентацией.