ИССЛЕДОВАНИЕ СОСТАВА МОНОСАХАРОВ ЛИГНОЦЕЛЛЮЛОЗНОЙ БИОМАССЫ РОССИЙСКОГО И ИНДИЙСКОГО ПРОИСХОЖДЕНИЯ

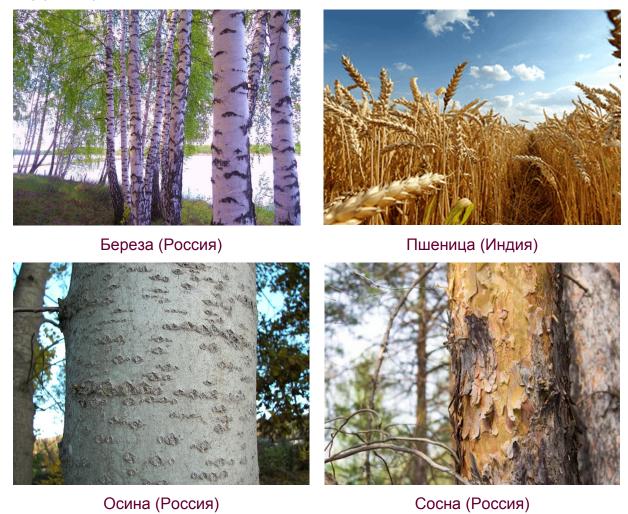
Демидова Ю.С.¹, Симакова И.Л.¹, Bokade V.V.², Rissanen J.V.³, Мурзин Д.Ю.³

¹Институт катализа СО РАН, Новосибирск ²CSIR-National Chemical Laboratory, Pune, India ³Åbo Akademi, Åbo/Turku, Finland simakova@catalysis.ru

ВВЕДЕНИЕ

Эффективная переработка биомассы направлена на увеличение выхода ценных компонентов, таких как моносахара, состав которых определяется видом растения, географическим местом произрастания (климатическими и почвенными условиями) и другими факторами [1].

Левулиновая кислота, получаемая из С6 и С5 моносахаров (глюкозы, ксилозы (Рис.1)), представляет собой ценную молекулу-платформу, на базе которой может быть получен целый ряд востребованных коммерческих соединений [1]. В этой связи левулиновая кислота приобретает все большую значимость как альтернатива аналогичного типа молекул, традиционно получаемых из нефти. Основной спрос на левулиновую кислоту формируют фармацевтика и сельское хозяйство, доля который составляет около 60%. Ожидается, что рынок левулиновой кислоты будет расти примерно на 5-6% в год. Крупнейший потребитель левулиновой кислоты — Северная Америка (около 40% мирового спроса). Одними из ведущих производителей являются GFBiochemicals Italy S.p.A и Heroy Chemical Industry Co., Ltd. Увеличивающийся спрос со стороны секторов конечного потребления, особенно фармацевтики, агрохимикатов и растворителей, будет стимулировать дальнейшее развитие рынка левулиновой кислоты, в связи с чем большой интерес представляет исследование наиболее доступных растений для определения видов с наибольшим содержанием соответствующих моносахаров в составе лигноцеллюлозы.


Рис.1. Схема превращения ксилозы в левулиновую кислоту (W, M, S – слабые, средние и сильные кислотные центры, соответственно) [1].

ЦЕЛЬ

Данная работа выполнена в рамках совместного Российско-Индийского проекта и направлена на разработку методики и исследование количественного состава сахаров в образцах лигноцеллюлозного сырья российского и индийского происхождения, соломы пшеницы (Индия) и опилок березы, осины и сосны (Россия), методом кислотного метанолиза с последующей дериватизацией силилирующими агентами для ГЖХ анализа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для определения состава сахаров были подготовлены образцы механически измельченной лигноцеллюлозы российского и индийского происхождения с исходным размером частиц 1-3 мм: опилки березы, опилки осины и сосны (Россия), а также образец индийской соломы пшеницы, произрастающей в штате Махараштра (г. Пуна, Индия) (Рис. 2).

Рис. 2. Лигноцеллюлозная биомасса российского и индийского происхождения, выбранная для исследования: береза, осина, сосна, солома пшеницы.

Количественный анализ сахаров в образцах проводили методом кислотного метанолиза с последующей дериватизацией силилирующими агентами для анализа ГЖХ. Для проведения метанолиза к образцу высушенной биомассы (10 мг) добавляли 2 мл раствора HCI/MeOH (безводного) (2M), выдерживали 5 ч при 100°С, охлаждали до Т_{комн} и нейтрализовали пиридином [2]. Площади пиков определяли из хроматограмм, а удельные концентрации сахаров определяли по формуле:

$$c_i = \frac{A_i}{A_{in-std}} \cdot \frac{V_{in-std} \cdot c_{in-std}}{V_i} \cdot \frac{1}{\frac{A_{i-cal}}{A_{in-std-cal}}}$$

где C_i и $C_{in\text{-std}}$ —удельные концентрации сахара и внутреннего стандарта, соответственно, г/л; A_i , $A_{in\text{-std}}$, $A_{i\text{-std-cal}}$ — площади сахара, внутреннего стандарта, сахара в калибровочном графике и внутреннего стандарта из калибровочного графика, соответственно, V_i , $V_{in\text{-std}}$ — объемы образца и внутреннего стандарта, соответственно, л.

В качестве внутреннего стандарта использовали раствор сорбитола в MeOH (0,1 мг/мл) добавляемого после проведения метанолиза. ГЖХ анализ проводили на капиллярной колонке HP-1 (ПИД).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Метод кислотного метанолиза с последующей дериватизацией силилирующими агентами для ГЖХ анализа был выбран как наименее деструктивный, по сравнению с другими, например, с методом кислотного гидролиза, в ходе которого может происходить кислотная деструкция моносахаридов, что может вызвать искажение результатов анализа [1, 3]. Типичная хроматограмма представлена на рис. 3.

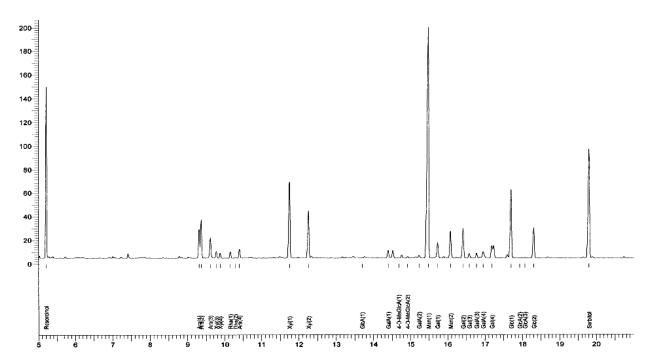


Рис. 3. Хроматограмма ГЖХ анализа сахаров, содержащихся в образцах лигноцеллюлозы российского и индийского происхождения (4-O-MeGlcA – 4-O-метилглюкуроновая кислота (М.м. 208,166), Ага –арабиноза (М.м. 150,13), Gal – галактоза (М.м. 180,16), GalA – галактуроновая килота (М.м. 194,1), Glc – глюкоза (М.м. 180,16), GlcA – глюкуроновая кислота (М.м. 194,1), Man – манноза (М.м. 180,16), Rha – рамноза (М.м. 164,16), Xyl – ксилоза (М.м. 150,13)).

На основании полученных абсолютных значений удельных концентраций моносахаров были рассчитаны относительные количества моносахаров в мольных % от общего содержания сахаров в образцах (Табл. 1). Стандартная ошибка для сахаров, содержащихся в больших количествах, составляла не более 5%, в то время как для сахаров в небольших количествах достигала 20% (по результатам 3 измерений).

Табл. 1. Относительное количество моносахаров (обозначения см. Рис. 3) (мол. %)

Образец	4-0-	Ara	Gal	GalA	Glc	GlcA	Man	Rha	Xyl
	MeGlcA								
Березовые опилки	4,8	2,5	2,5	5,3	11,2	0,7	3,7	1,7	67,6
Осиновые опилки	3,1	9,0	9,1	4,3	15,0	0,6	33,9	1,1	23,6
Сосновые опилки	3,4	7,1	7,4	6,1	14,3	1	37	1	23,4
Солома пшеницы	1,7	9,5	2,5	1,4	14,4	1,2	1	1	68,2

Установлено, что березовые опилки характеризуются наибольшим общим содержанием сахаров 287,6 г/л, осиновые опилки содержат 282,9 г/л. Более высокое содержание сахаров в березовых опилках, а также наибольшее содержание глюкозы и ксилозы делает березовые опилки перспективным сырьем для синтеза левулиновой кислоты. Следует отметить, что солома пшеницы индийского происхождения также близка по составу и содержанию сахаров к березовым опилкам, и представляет большой интерес как перспективное сырье для получения левулиновой кислоты.

выводы

Методом ГЖХ анализа проведено количественное определение содержания моносахаров, способных к превращению в левулиновую кислоту. Так, солома пшеницы (Индия) содержит наибольшее количество глюкозы и ксилозы, при этом в осиновых опилках содержится наибольшее количество глюкозы, а в березовых опилках наибольшее содержание ксилозы. Полученные результаты могут быть использованы для выбора исходного растительного сырья при разработке однореакторного метода синтеза левулиновой кислоты из лигноцеллюлозы [4].

СПИСОК ЛИТЕРАТУРЫ

- [1] Chamnankid B., Ratanatawanate C., Faungnawakij K. Chem. Eng. J. 258 (2014) 341.
- [2] Sundberg A., Sundberg K., Lillandt C., Holmbom B. Nord. Pulp Pap. Res.41 (1996) 216.
- [3] Bertaud F., Sundberg A., Holmbom B. Carbohydrate Polymers 48 (2002) 319.
- [4] Gupta A., Nandanwar S.U., Niphadkar P., Simakova I., Bokade V. Biomass and Bioenergy. 2020. V.139. 105646:1-8.

БЛАГОДАРНОСТЬ

Работа поддержана грантом РФФИ No 18-53-45013 ИНД_а; грантом INT/RUS/RFBR/P-323.

