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In the present work, the problem of the motion of self-propelled torus in a viscous
incompressible fluid is investigated numerically. The surface of torus rotates with constant
velocity around its centerline. The rotating boundary of a torus generates inertia in the
surrounding fluid. The outer and inner portions produce inertia in opposite directions.
There are two self-motion regimes. In one of them, the torus moves in the direction of the
inner surface motion due to the larger production of inertia by the outer portion of the
torus boundary. The direction of propulsion is the same as in the case of zero Reynolds
number. In another one the torus moves in opposite direction due to the high momentum
flux associated with the jet of fluid expelled from the hole. The drag coefficients and
flow patterns are analyzed at Reynolds numbers Re = 20, 30, 40, (Reynolds number
defined by velocity of uniform stream and smaller diameter of torus), the aspect ratios
Ar = 2, 3, (aspect ratio is defined as ratio of torus diameter to cross-section diameter
of torus), and a range of rotational rate −4.5 ≤ α ≤ 2.5 ( α is defined as ratio of
tangential tank-treading motion of torus surface to the uniform far-field velocity).

1. Introduction

The flow around self-propelled body could be quite different from that of a passively towed
body. Flow past towed bluff-body have been of interest to researchers for many decades. To
realize a self-propelled motion a body must have its own source of energy to overcome the
energy spent against the drag force. In pure motion by self-propulsion the total net force and
torque, external to the system body-fluid, acting on the body are zero. Although the problem
of fluid flow past delf-propelled body originates in nature and its of practical importance,
the number of works concerning it is limited. The review of the work on this research can
be found in [1, 2] and therein literature references.

The hydrodynamics of a torus is important because it has the simplest geometry which
can describe self-propelled motion of microorganisms. Purcell [3] suggested considering a
rotational torus as a toroidal swimmer. The papers [2, 4]address the hydrodynamics of torus
rotating about its centerline in the zero Reynolds number. Both papers demonstrate that
torus moves in the direction of the inside surface motion. The mechanism of propulsion is
based on the difference in viscous friction to the rotation of the inner (i.e. in the hall) and
outer parts of the torus surface. However, it is pointed out without detailed discussion in [2]
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that there is a reversal propulsion direction at a higher speed of torus rotation. The motion
happened due to the inertia of the jet expelled by the inner surface rotation prevails over
production of inertia by the outer portion of torus boundary.

In the present work the hydrodynamics of torus, rotating about its centerline at low
nonzero Reynolds number is addressed. The two direction of self-motion are compared and
analyzed.

2. Governing equations

Assuming the flow remains axisymmetric for all time, makes the toroidal coordinate system
attached to the torus:

x =
c sinh η cos ϕ

cosh η − cos ξ
, y =

c sinh η sin ϕ

cosh η − cos ξ
, z =

c sin ξ

cosh η − cos ξ
, (1)

where ξ ∈ (0, 2π] , η ∈ (−∞,∞) and ϕ ∈ [0, 2π), c > 0 is the characteristic length, the
natural choice. The surface η = η0 defines a torus, z2 + (r − c coth η0)

2 = c2csch2η0, and the
surface ξ = ξ0 define a spherical bowl, (z − c cot η0)

2 + r2 = c2csc2ξ0, where r2 =
√

x2 + y2 =
c sinh η

cosh η − cos ξ
. Figure 1 shows the torus with radius b = c coth η and the circular cross-section

radius a = c cschη0. If a and b are given, one can find c and η0 as the following

Fig. 1. Sketch of the geometry of the torus. Fig. 2. Staggered arrangement of u,v and p.
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The torus geometry is described by the aspect ratio parameter Ar = b/a. In terms of
the toroidal coordinates and the assumption of axisymmetry, the governing Navier-Stokes
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equations in dimensionless form are given by

∂vξ

∂t
+

1
h

(
vξ

∂vξ

∂ξ
+ vη

∂vξ

∂η

)
+

1
c

[
v2
η sin ξ − vξvη sinh η

]
= −1

h

∂p

∂ξ

+
2

Re

[
1
h2

(
∂2vξ

∂ξ2
+

∂2vξ

∂η2

)
− 1

ch

(
sin ξ

∂vξ

∂ξ
+ 2 sinh η

∂vη

∂ξ
− 2 sin ξ

∂vη

∂η

)

+
(

coth η

h2
− 1

ch
sinh η

)
∂vξ

∂η
+

(
sin ξ

c2 sinh η

(
(2− 2 cosh η cos ξ) + sinh2 η

))
vη

+
(

1
ch

cosh η − 2
c2

(
sin2 ξ + sinh2 η

)
+

1
c2

(cosh η cos ξ − 1)
)

vξ

]
,

(2)

∂vη

∂t
+

1
h

(
vξ

∂vη

∂ξ
+ vη

∂vη

∂η

)
+

1
c

[
v2
ξ sinh η − vξvη sin ξ

]
= −1

h

∂p

∂η

+
2

Re

[
1
h2

(
∂2vη

∂ξ2
+

∂2vη

∂η2

)
− 1

ch

(
sin ξ

∂vη

∂ξ
− 2 sinh η

∂vξ

∂ξ
+ 2 sin ξ

∂vξ

∂η

)

+
(

coth η

h2
− sinh η

ch

)
∂vη

∂η
+

(
cosh η

ch
− 2

c2

(
sin2 ξ + sinh2 η

))
vη

+

(
1
c2

(
sin2 ξ + (cosh η cos ξ − 1) +

(1− cosh η cos ξ)2

sinh2 η

))
vη − sin ξ sinh η

c2
vξ

]
,

(3)

1
h

(
∂vξ

∂ξ
+

∂vη

∂η

)
− 2h sin ξ

c
vξ +

(
coth η − 2h sinh η

c

)
vη = 0, (4)

where p is the pressure, vξ and vη are the velocity components in ξ and η directions,
respectively, and h = c/ (cosh η − cos ξ). The velocities are non dimensionalized with the
free stream velocity U∞, all lengths are non dimensionalized with the radius a and the

pressure by ρU2
∞. Here Re denotes the Reynolds number defined by Re =

2U∞a

ν
, where ν

is the kinematic viscosity coefficient. Boundary conditions for vξ and vη include the no-slip
and impermeability conditions

vξ = α, vη = 0, ξ ∈ (0, 2π], η = η0, (5)

where α = (aω)/U∞ is the nondimensional rotational velocity at the surface, the periodicity
conditions

vξ (ξ, η) = vξ (ξ + 2π, η) , vη (ξ, η) = vη (ξ + 2π, η) , p (ξ, η) = p (ξ + 2π, η) , (6)

and the far-field condition

v = (vr, vz) = (0, 1) , p =
p∞

ρU2∞
as r2 + z2 →∞. (7)

Here, vr and vz are the components of the velocity vector in the cylindrical coordinate system
with

vξ =

(
−h

a
sinh η sin ξ

)
vr +

(
h

a
(cosh η cos ξ − 1)

)
vz

vη =

(
−h

a
(cosh η cos ξ − 1)

)
vr −

(
h

a
sinh η sin ξ

)
vz.

(8)

On the axis of symmetry r = 0 the velocity components and pressure satisfy the following
conditions

∂vξ

∂η
= 0, vη = 0 and

∂p

∂η
= 0. (9)
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The two most important hydrodynamic characteristics of the flow around the body are the
net force and angular momentum. The net force is decomposed into components FL and FD

perpendicular and parallel to the flow direction. The net torque and FL are equal to zero due

to the symmetry of the flow. The drag coefficient is defined as CD =
FD

0.5ρAfrontalU2∞
, where

ρ and Afrontal are the fluid density and the projected frontal area of the body, respectively.
The drag coefficient comprises a pressure drag coefficient and a viscous drag coefficient, i.e.
CD = CDp + CDf

. They are defined as

CDp = − 1

2abπρU2∞

2π∫

0

2π∫

0

pn · izh2 sinh η0dφdξ = −sinh2 η0

b

2π∫

0

p
sin ξ

(cosh η0 − cos ξ)
h2dξ,

CDf
= − 1

2abπρU2∞

2π∫

0

2π∫

0

µ (n× ω) · izh2 sinh η0dφdξ = −sinh2 η0

b

2π∫

0

2ω (cosh η0 − 1)

Re (cosh η0 − cos ξ)
hdξ,

where ir and iz are the unit vectors in the r and z axes directions, respectively. The vorticity

ω is defined by the following equation ω =
1

h3 sinh η0

(
∂

∂ξ
(hvη)− ∂

∂η
(hvξ)

)
.

3. Numerical solution method

In the case of steady flow, time in Equations (2) and (3) can be considered as an artificial
(iterative) parameter. A staggered arrangement of the variables on a uniform grid is used. A
two-step time-split projection method is utilized to advance the flow field. First, the velocity
components are advanced from time level “n” to an intermediate level “*” by solving Equations
(2) and (3) explicitly without the pressure term. In the advection-diffusion step, the spatial
derivatives are approximated by the central finite differences. One side finite differences are
utilized near boundaries due to the staggered arrangement of variables. Then the Poisson
equation for the pressure is solved fully implicitly by the method of stabilizing correction (see
Yanenko [5]). The equation for pressure is derived by using the mass conservation requirement
for each computational cell. Once the pressure is updated, the final level is computed with a
pressure-correction step. Figure 2 shows the computational domain, sketch of the grid, and
location of the unknowns. Far-field boundary conditions (7) are shifted on the boundary of
domains Ω1 and Ω2 which are defined as

Ω1 = {(ξ, η) | 0 ≤ ξ ≤ εξ, 0 ≤ η ≤ εη } , Ω2 = {(ξ, η) | 2π − εξ ≤ ξ ≤ 2π, 0 ≤ η ≤ εη } ,

where εη = K4η and εξ = M4ξ, K and M are integer numbers, and4η and 4ξ are the size
of computational cell in the η and ξ directions, respectively. In the physical space (x, y, z)
the boundaries of domains Ω1 and Ω2 are located sufficiently far from the torus and these
boundaries are the coordinate surfaces that are convenient for the implementation of a finite
difference method.

4. Results

The characteristics of flow past a torus rotating about its centerline at the Reynolds numbers
Re = 20, 30, and 40 with a rate of rotation of −4.5 ≤ α ≤ 2.5 for a variety of aspect ratios
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were studied. The torus is placed in a vertical stream (from down to up) of uniform flow
velocity U∞ as shown in Figure 1. The positive direction of angular velocity at the torus
surface is such that the rotating surface accelerates the uniform stream on the outer ring
surface due to the no-slip requirement. On the inner ring surface, the positive rotational
velocity of the wall is opposed to the oncoming flow direction.

The main aim of the present research is to find a self-propelled regime of motion. The
self-motion of the torus is caused by the propulsive fluid fluxes produced by the torus on
its rotating boundary. The translation velocity of torus can be in the direction of inner
surface motion (positive angular velocity) or in the direction of outer surface motion (negative
angular velocity). It should be noted that self-motion of the body has to be considered in
whole space. In this situation, the domain of the problem is time-dependent. The Navier-
Stokes equations are invariant with respect to Galilean transformation and the problem of
self-motion in motionless media can be reformulated by a linear change of variables in the
coordinate system attached to the body, and in a way which reduces it to a problem in time-
independent domain. In this case the value of the uniform stream, U∞, which corresponds
to self-motion is unknown and has to be determined from the condition that the total drag
force has to be zero. The drag force acting on the torus depends on the Reynolds number Re,
aspect ratio Ar, and rate of rotation α, since CD = CD(Re,Ar, α). The self-propelled flow
regime corresponds to CD = CD(Re,Ar, α) = 0. Let us define αcrit as that which produces
zero drag on the torus, i.e. at αcrit, CD(Re, Ar, αcrit) = 0. It is clear that αcrit depends on
Re and aspect ratio Ar, i.e. αcrit = αcrit(Re, Ar). It is worth noting that the case α 6= αcrit

also has physical meaning. It can be considered as uniform flow past a torus with rotating
surface or a towed torus with rotating surface in an unbounded motionless fluid.

The influence of the rotational speed α on CD is demonstrated in Figure 3. The drag
coefficient for the flow past a torus with aspect ratio Ar = 2 are analyzed here for the
Reynolds number 40. The curve presented in Fig. 3 shows a linear decrease in CD with
increasing positive α. For the negative α drag coefficient CD increases with increasing module
of α up to α ∼= 1.5. The following increasing of |α| characterizes by decreasing CD. The cases
of zero drag correspond to the self motion of torus at α ≈ 4.57 and α ≈ 1.61.
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Fig. 3. Variation of drag coefficient with rate of rotation for aspect ratios Ar = 2 and Re = 40.

Figure 4 shows the stream lines patterns for Ar = 2, Re = 40 and α = −4.57 (self-
motion), −3.5, −1.5, 0.0. 1.0 and 1.61 (self motion). In the self-motion regime corresponding
to the positive α, the main stream flows around the rotating toroidal fluid region which



6

encloses the rigid torus rotating around its centerline. The torus moves in the direction of
the inner surface motion as in the case of Stokes’ problem.

The self-motion regime corresponding to the negative α ≈= −4.57 associated with the
jet of fluid expelled from the hole.
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Fig. 4. Streamline patterns of flow past a rotating torus at Re = 40 with Ar = 2.
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