Параллельный метод решения уравнения Пуассона в цилиндрических координатах для задач астрофизики*

Н.В. Снытников

Институт вычислительной математики и математической геофизики СО РАН e-mail: nik@ssd.sscc.ru

Разработан параллельный конечно-разностный метод для решения уравнения Пуассона в цилиндрических координатах и предназначенный для задач, требующих подробных сеток с числом узлов порядка 10 миллиардов и, соответственно, суперкомпьютеров с $10^3 - 10^4$ процессоров. Созданный алгоритм использует декомпозицию области с помощью метода локальных коррекций, метод Джеймса для вычисления потенциала изолированных систем и компактную разностную схему четвертого порядка аппроксимации.

1. Введение

В настоящее время, в связи с ожидаемой доступностью суперкомпьютеров с сотнями тысяч процессоров, появляется необходимость в разработке параллельных алгоритмов, позволяющих проводить серийные численные эксперименты на сетках с количеством узлов от $10^3 \times 10^3 \times 10^3$ до $10^4 \times 10^4 \times 10^4$ и применимых к решению задач астрофизики (звездной динамики и гравитационной газодинамики).

Существуют два основных подхода для обеспечения высокого пространственного разрешения: адаптивное измельчение сетки [1], [2] и декомпозиция области [3]. Кроме того, недавно был представлен параллельный алгоритм прогонки для решения набора трехдиагональных систем с одинаковой правой частью [4], сконструированный в духе метода [5]. Его основная идея заключается в начальном предвычислении определенных строк обратной матрицы и использовании этой информации для быстрого вычисления векторов решения для каждой новой правой части. Таким образом, если решение уравнения Пуассона сведено с помощью быстрого преобразования Фурье к решению независимых трехдиагональных систем, то далее каждую из этих систем можно решить с помощью метода [4].

В настоящей работе мы адаптировали метод декомпозиции области на основе метода локальных коррекций (МЛК) [3, 6] для его применения в цилиндрических координатах. Для этого были решены две подзадачи: метод Джеймса [7], позволяющий вычислять потенциал изолированных систем, был модифицирован для цилиндрических координатах с «вырезанной» центральной областью; и был разработан компактный разностный шаблон четвертого порядка аппроксимации с граничными условиями на центральной оси цилиндра, заданными таким образом, что итоговая система решается прямыми методами быстрого преобразования Фурье и трехдиагональной прогонкой по радиусу.

^{*}Работа выполнена при частичной поддержке Междисциплинарным интеграционным проектом N.26, Междисциплинарным интеграционным проектом N.113.

Н.В. Снытников

Статья организована следующим образом: в разделе 2 дается общее описание алгоритма, в разделе 3 схематично описан компактный разностный шаблон четвертого порядка, в разделе 4 представлены результаты измерения производительности параллельной реализации.

2. Общее описание алгоритма

Мы следуем описанию алгоритма, предложенному в [3] для двумерного уравнения Пуассона в декартовых координатах и позднее расширенному на трехмерный декартовый случай в [6]. Его основная идея заключается в представлении потенциала $\Phi(\mathbf{r})$ в виде локальной близкодействующей части $\Phi^{loc}(\mathbf{r})$ и дальнодействующей части $\Phi^{far}(\mathbf{r})$, где $\Phi^{loc}(\mathbf{r})$ требует подробной сетки, а $\Phi^{far}(\mathbf{r})$ хорошо представима на грубой сетке, поскольку предполагается, что дальнодействующий потенциал является достаточно гладкой функцией.

В цилиндрических координатах алгоритм выглядит следующим образом.

- 1. Исходная область Ω подразделяется на P непересекающихся подобластей Ω_p по радиальной и вертикальной координатам. Каждой подобласти присваивается один процессор.
- 2. Для каждой подобласти Ω_p (p=1,..,P) вводится подробная сетка $N_r \times N_\phi \times N_z$ таким образом, что объединение этих сеток является требуемой подробной сеткой для всей области Ω . Пространственные шаги сетки обозначаются h_r,h_ϕ,h_z . Если P записывается как $P_r \times P_z$, где P_r и P_z обозначают число подобластей по радиальной и вертикальной координатам, то глобальная подробная сетка в Ω имеет размер: $(P_r \cdot N_r) \times N_\phi \times (P_z \cdot N_z)$.
- 3. Для каждой подобласти Ω_p (параллельно) решается локальное уравнение Пуассона для изолированных систем с краевыми условиями, заданными на бесконечности:

$$\Delta \Phi_p(\mathbf{r}) = 4\pi G \rho_p(\mathbf{r}), \quad \Phi_p(\mathbf{r})|_{|\mathbf{r}| \to \infty} = 0,$$

где Φ_p это потенциал, создаваемый распределением зарядов с плотностью ρ_p внутри Ω_p , а G – гравитационная постоянная.

На этом шаге используется разностный оператор Лапласа с компактным шаблоном и метод Джеймса для обработки краевых условий, заданных на бесконечности. В итоге получаем сеточную функцию $\Phi_p^{h,\infty}$, где h обозначает подробную сетку, а ∞ обозначает тот факт, что функция является решением задачи с краевыми условиями, заданными на бесконечности.

4. В области Ω вводится грубая сетка $M_r \times M_\phi \times M_z$ для глобального решения. Размеры сетки M_r, M_ϕ, M_z выбираются таким образом что:

$$M_d = \frac{P_d \cdot N_d}{CoarseFactor}, \quad d = r, \phi, z,$$

где $CoarseFactor = 4 \div 32$ и является настраиваемым параметром численного эксперимента. Пространственные шаги грубой сетки обозначим H_r, H_ϕ, H_z . Тогда выполняется следующее соотношение:

$$H_d = CoarseFactor \cdot h_d, \quad d = r, \phi, z.$$

- 5. Для каждой подобласти вычисляем плотность ρ_p^H на грубой сетке с помощью применения разностного оператора Лапласа четвертого порядка к сеточной функции $\Phi_p^{h|H,\infty}$, где h|H обозначает, что значения функции $\Phi_p^{h,\infty}$ берутся на грубой сетке H.
- 6. Имея функцию плотности ρ_p^H , определенную в каждой подобласти на грубой сетке, конструируем глобальную сеточную функцию ρ^H с помощью объединений ρ_p^H (глобальных пересылок между подобластями Ω_p).
- 7. Решаем уравнение Пуассона для изолированных систем с краевыми условиями, заданными на бесконечности, с использованием разностного оператора Лапласа четвертого порядка аппроксимации:

$$\Delta\Phi(\mathbf{r}) = 4\pi G \rho(\mathbf{r}), \quad \Phi(\mathbf{r})|_{|\mathbf{r}|\to\infty} = 0.$$
 (1)

- 8. Вычисляем граничные условия $\Phi_p(\Gamma(\Omega))$ для заключительного шага Сначала из глобального потенциала Φ_p^H вычитаем локальную часть $\Phi_p^{h|H,\infty}$. Затем интерполируем значения полученного глобального потенциала Φ_p^H в в граничные узлы подробной сетки Ω_p (при этом используется интерполяционная схема четвертого порядка). Наконец, к полученным граничным значениям прибавляем соответствующие значения $\Phi_p^{h,\infty}$.
- 9. Для каждой подобласти решаем задачу Дирихле для уравнения Пуассона:

$$\Delta \Phi_p(\mathbf{r}) = 4\pi G \rho_p(\mathbf{r}), \quad \Phi_p(\mathbf{r})|_{\Gamma(\Omega_p)} = \Phi_p(\Gamma(\Omega)).$$

Таким образом нераспараллеливаемые вычисления осуществляются только на шаге 7 для сетки размером $M_r \times M_\phi \times M_z$, а межпроцессорные коммуникации (сбор глобального трехмерного массива той же размерности) выполняются на шаге 6. Поскольку предполагается, что количество узлов глобальной грубой сетки значительно меньше количества узлов подробной сетки (параметр $CoarseFactor = 4 \div 32$), то эти шаги не становятся определяющими частями программы. Итоговый порядок аппроксимации схемы составляет $O(H^4 + h^2)$. Выбирая подходящее соотношение между шагами H и h (это соотношение накладывает еще одно ограничение на параметр CoarseFactor) мы получим второй порядок аппроксимации $O(h^2)$.

В следующем разделе приводится схематичное описание схемы четвертого порядка аппроксимации. Детальное описание разработанной модификации метода Джеймса для цилиндрических координат и используемых методов решения СЛАУ, полученной после аппроксимации, приводятся в работе [8].

3. Компактный шаблон четвертого порядка

Компактный шаблон четвертого порядка аппроксимации для решения (1) получен стандартным способом с использованием выражений, содержащих первые и вторые частные производные правой части ρ (в предположении, что они существуют).

 $^{^1}$ Для цилиндрических координат порядок аппроксимации выбранного семиточечного шаблона составляет $O(\frac{(h_r^2 + h_\phi^2)}{r} + h_z^2)$.

4 Н.В. Снытников

Подробное описание этого подхода может быть найдено в работе [11] для уравнения Гельмгольца в двумерных полярных координатах.

Возьмем известный 7-точечный шаблон со смещением на 1/2 шага по радиусу [9, 10]:

$$\frac{1}{h_r^2 r_i} \left[r_{i+\frac{1}{2}} (\Phi_{i+1,k,l} - \Phi_{i,k,l}) - r_{i-\frac{1}{2}} (\Phi_{i,k,l} - \Phi_{i-1,k,l}) \right] + \frac{1}{h_{\phi}^2 r_i^2} (\Phi_{i,k+1,l} - 2\Phi_{i,k,l} + \Phi_{i,k-1,l}) + \frac{1}{h_z^2} (\Phi_{i,k,l+1} - 2\Phi_{i,k,l} + \Phi_{i,k,l-1}) = \rho_{i,k,l} \\
i = \frac{1}{2}, ..., N_r - \frac{1}{2}; \ k = 1, ..., N_{\phi}; \ l = 1, ..., N_z. \tag{2}$$

Введем обозначения $\Lambda_r^2, \Lambda_\phi^2, \Lambda_z^2$:

$$\Lambda_r^2 = \frac{1}{h_r^2 r_i} \left[r_{i+\frac{1}{2}} (\Phi_{i+1,k,l} - \Phi_{i,k,l}) - r_{i-\frac{1}{2}} (\Phi_{i,k,l} - \Phi_{i-1,k,l}) \right],
\Lambda_\phi^2 = \frac{1}{h_\phi^2 r_i^2} (\Phi_{i,k+1,l} - 2\Phi_{i,k,l} + \Phi_{i,k-1,l}),
\Lambda_z^2 = \frac{1}{h_z^2} (\Phi_{i,k,l+1} - 2\Phi_{k,l} + \Phi_{i,k,l-1}).
\Lambda_r^2 + \Lambda_\phi^2 + \Lambda_z^2 = \rho_{i,k,l}.$$
(3)

Также обозначим F_r, F_ϕ, F_z :

$$\Lambda_r^2 = F_r = \rho_{i,k,l} - \Lambda_\phi^2 - \Lambda_z^2,
\Lambda_\phi^2 = F_\phi = \rho_{i,k,l} - \Lambda_r^2 - \Lambda_z^2,
\Lambda_z^2 = F_z = \rho_{i,k,l} - \Lambda_r^2 - \Lambda_\phi^2.$$
(4)

Используя разложение Тейлора для $\Phi_{i\pm 1,k,l}$ в окрестности $\Phi_{i,k,l}$ вплоть до членов порядка $O(h_r^8)$, подставляя выражение в Λ_r^2 , и учитывая тождество (полученное с помощью дифференцирования уравнения Пуассона по r):

$$\Phi^{(4)} + \frac{2\Phi^{(3)}}{r} = F_r'' + \frac{F_r'}{r} + \frac{F_r}{r^2} - \frac{2\Phi'}{r^3},$$

(где все F' обозначает частную производную по r), получим:

$$\Lambda_r^4 = \Lambda_r^2 - \frac{h_r^2}{12} (A(\rho) - A(\Lambda_\phi^2) - A(\Lambda_z^2)) + \frac{h_r}{12r^3} (\Phi_{i+1,k,l} - \Phi_{i-1,k,l})$$
 (5)

где A(X) это конечно разностный оператор, определенный в виде:

$$A(X) = \frac{X_{i+1,k,l} - 2X_{i,k,l} + X_{i-1,k,l}}{h_r^2} + \frac{X_{i+1,k,l} - X_{i-1,k,l}}{2r_ih_r} + \frac{X_{i,k,l}}{r_i^2}.$$

Аналогичным образом получим для Λ_ϕ^2 и Λ_z^2 :

$$\Lambda_{\phi}^{4} = \Lambda_{\phi}^{2} - \frac{h_{\phi}^{2}}{12} (B(\rho) - B(\Lambda_{r}^{2}) - B(\Lambda_{z}^{2})),
B(X) = \frac{X_{i,k+1,l} - 2X_{i,k,l} + X_{i,k-1,l}}{h_{\phi}^{2}}.$$
(6)

$$\Lambda_z^4 = \Lambda_z^2 - \frac{h_z^2}{12} (C(\rho) - C(\Lambda_r^2) - C(\Lambda_\phi^2)),
C(X) = \frac{X_{i,k,l+1} - 2X_{i,k,l} + X_{i,k,l-1}}{h_z^2}.$$
(7)

Полученный оператор аппроксимирует уравнение Пуассона с порядком $O(\frac{(h_r^4 + h_\phi^4)}{r} + h_z^4)$

$$\Lambda_r^4 + \Lambda_\phi^4 + \Lambda_z^4 = \rho_{i,k,l}. \tag{8}$$

Несмотря на громоздкость полученной схемы, она обладает той же структурой, что и исходный шаблон второго порядка. Однако существует сложность с заданием граничных условий на полюсе. Исходная схема второго порядка (2) формально требует, чтобы значения $\Phi_{i-1,k,l}$ были известны для i=1/2. Однако из-за нулевого множителя $r_{i-\frac{1}{2}}$, весь член $r_{i-\frac{1}{2}}(\Phi_{i,k,l}-\Phi_{i-1,k,l})$ также обращается в ноль, и вычислять соответствующие значения не требуется.

К сожалению, это свойство не выполняется для созданной схемы четвертого порядка. В этом случае для постановки граничных условий можно использовать методы, описанные в [10, 12]. Однако мы воспользовались подходом, предложенным в [13]. Его суть заключается в записи узла (-1/2,k,l) через $(1/2,k+N_\phi/2,l)$ и дальнейшем применении преобразования Фурье для каждой функции, фигурирующей в схеме. Оказывается, что тогда значение любой Фурье-гармоники с номером m в узле $(-\frac{1}{2},l)$ может быть записано как $G_{-\frac{1}{2},l}(m)=(-1)^mG_{\frac{1}{2},l}(m)$. То есть все неизвестные граничные значения исчезают, и к СЛАУ может быть применено преобразование Фурье по вертикальной координате и прогонка по радиусу.

4. Оценка производительности

Тестовые расчеты для оценки производительности программы выполнялись на кластерных системах Сибирского суперкомьютерного центра (ССКЦ) и Межведомственного суперкомпьютерного центра (МСКЦ). В Таблице 1 представлено время исполнения программы, полученное на кластере МСКЦ, основанном на процессорах Intel Xeon.

Данные тестовые расчеты показывают, что глобальные коммуникации не являются узким местом программы даже в случае использования больших сеток (аналогичные результаты были также получены для сетки $2048 \times 2048 \times 2048$). Таким образом созданный параллельный алгоритм продемонстрировал приемлемые результаты и возможность проведения серийных численных экспериментов на очень подробных сетках. Дальнейшие улучшения как самого алгоритма, так и его программной реализации, могут быть проведены с помощью оптимизации последовательных алгоритмов и оптимального выбора параметра CoarseFactor таким образом, чтобы максимально уменьшить размер глобальной грубой сетки при сохранении качества решения.

Список литературы

- [1] Greengard L., Lee J.-Y. A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy // J. Comput. Phys. 1996. Vol.125. P.415–424.
- [2] Huang J., Greengard L. A Fast Direct Solver for Elliptic Partial Differential Equations On Adaptively Refined Meshes // SIAM J. Sci. Comput. 2000. Vol.21. P.1551–1566.
- [3] Balls G.T., Colella P. A Finite Difference Domain Decomposition Method Using Local Corrections for the Solution of Poisson's Equation // J. Comp. Physics. 2002. Vol.180. P.25-53.

6 Н.В. Снытников

Number of	Время решения для сетки $1024 \times 1024 \times 1024$								
processors,	с различными значениями $CoarseFactor$, секунды								
	CoarseFactor = 4			CoarseFactor = 8			CoarseFactor = 16		
	Глоб. сетка: 256 ³			Глоб. сетка: 128 ³			Глоб. сетка: 64 ³		
Local grid	Общее время			Общее время			Общее время		
	Лок.	Сбор.	Глоб.	Лок.	Сбор.	Глоб.	Лок.	Сбор.	Глоб.
64	255.2			125.4			116.9		
$128 \times 1024 \times 128$	115.2	0.7	140	115.2	< 0.1	10.2	115.2	< 0.1	1.7
256	172.8			42.3			33.8		
$64 \times 1024 \times 64$	32	0.8	140	32	< 0.1	10.2	32	< 0.1	1.7
1024	154.1			23.4			14.9		
$32 \times 1024 \times 32$	13	1.1	140	13	0.2	10.2	13	0.2	1.7

Т а б л и ц а 1. Оценка производительности программы для сетки с числом узлов $1024 \times 1024 \times 1024$, различным количеством процессоров и значениями параметра CoarseFactor. Лок. сетка обозначает размер подробной сетки, покрывающей каждую подобласть. Глоб. сетка обозначает размер глобальной грубой сетки. Лок. – время выполнения всех локальных процедур. Cfop. – время, требуемое на глобальные коммуникации (сбор глобальной грубой сетки). Глоб. – время, требуемое для решения уравнения Пуассона на глобальной грубой сетке.

- [4] TEREKHOV A.V. Parallel Dichotomy Algorithm for Solving Tridiagonal System of Linear Equations with Multiple Right-Hand Sides // Parallel Computing. 2010. Vol.36. P.423–438.
- [5] Яненко Н.Н., Коновалов А.Н., Бугров А.Н., Шустов Г.В. Об организации параллельных вычислений и «распараллеливании» прогонки // Численные методы механики сплошной среды. 1978. Т.9. С.139–146.
- [6] MCCORQUODALE P., COLELLA P., BALLS G.T., BADEN S.B. A Local Corrections Algorithm for Solving Poisson's Equation in Three Dimension // Comm. App. Math. And Comp. Sci. 2007. Vol.2. P.57–81.
- [7] James R.A. The Solution of Poisson's Equation for Isolated Source Distributions // J. Comp. Physics. 1977. Vol.25. P.71–93.
- [8] Snytnikov N.V. Computation of Gravitational Potential of Isolated Systems in Cylindrical Coordinates // Bulletin of Novosibirsk Computing Centre. 2011. In press.
- [9] В.А. Вшивков, В.Н. Снытников, Н.В. Снытников. Моделирование трехмерной динамики вещества в гравитационном поле на многопроцессорных ЭВМ // Вычислительные технологии. 2006, Т.11. N.2. С.15-27.
- [10] Самарский А.А., Андреев В.Б. Разностные методы для эллиптических уравнений. М.: Наука. 1976.
- [11] Britt S., Tsynkov S., Turkel E. A Compact Fourth Order Scheme for the Helmholtz Equation in Polar Coordinates // Journal of Scientific Computing. 2010. Vol.45. P.26-47.
- [12] ПААСОНЕН В.И. Граничные условия повышенной точности в полюсах координатных систем // Вычислительные технологии. 2000. Т.5, N.1. С.93-105.
- [13] Mohseni K., Colonius T. Numerical Treatment of Polar Coordinate Singularities // J. Comp. Physics. 2000. Vol.157. P.787-795.