Математическое моделирование процесса изгибания протяженного трубопровода^{*}

О.П. ТКАЧЕНКО Вычислительный Центр ДВО РАН, Хабаровск e-mail: olegt1964@gmail.com

Выполнен численный анализ динамики изогнутого трубопровода на длительных интервалах времени под влиянием внутреннего потока жидкости и сопротивления внешней среды. Для нескольких модельных профилей найдены перемещения и деформации стенок трубы, рассматриваемой как техническая оболочка. Показано, что поперечные сечения трубы испытывают депланацию, не являющуюся краевым эффектом.

Введение.

Проблемы исследования движения труб под воздействием жидкости являются классическими задачами механики, всегда привлекавшими внимание исследователей. К их решению в различных постановках обращались Н.Е. Жуковский, В.З. Власов, А.С. Вольмир, Л.Г. Лойцянский, С.П. Тимошенко, В.И. Феодосьев и другие известные специалисты. В.И. Феодосьев, по-видимому, впервые математически точно поставил задачу об устойчивости подземного трубопровода [1]. Эта неустойчивость является одной из причин опасного изменения профиля. Сейсмическая активность с точки зрения искажения профиля трубопроводов проанализирована в [2]. С.П. Тимошенко создал теорию конечного изгиба арки [3], а В.З. Власов — линейную теорию полубезмоментных оболочек [4], хорошо описывающую поведение труб, для которых выполнено условие

$$\frac{h}{R_0} \le 0.1; \qquad \frac{\min(L, \rho_0)}{R_0} \ge 4,$$
 (1)

где *h*- толщина стенки, *L*- длина, *R*₀- радиус поперечного сечения, *ρ*₀- радиус кривизны профиля трубы. Эта теория работает в рамках приближения малых деформаций.

На основе [3], [4] в [5], [6] удалось учесть в рамках применимости условия (1) конечность продольных деформаций, вызванных изгибом осевой линии трубы, тем самым расширив теорию на протяженные трубы. В [6] построена математическая модель и рассчитаны примерные движения трубопровода, но они изучены на интервале времени менее суток, хотя и показали наличие депланаций сечения трубы.

Целью данной работы является численное моделирование движения труб большой длины и с относительно большим временем протекания процессов. Подтверждена гипотеза о том, что стенки протяженных труб испытывают депланацию поперечного сечения, не ограниченную малой окрестностью некоторых точек.

1. Математическая модель трубопровода.

Используется математическая модель, построенная в [6], где введены криволинейные координаты (O, s, θ, R) и соответствующие им безразмерные координаты (O, ζ, θ, r) .

^{*}Работа поддержана РФФИ (грант 10-01-00060) и Президиумом ДВО РАН (проект 09-II-SB-01-001).

Уравнения модели:

$$\alpha^{2} \frac{\partial^{2} u_{0}}{\partial \zeta^{2}} + \nu \alpha \frac{\partial w_{0}}{\partial \zeta} - \alpha^{3} \left(\frac{\partial w_{0}}{\partial \zeta} \frac{\partial^{2} w_{0}}{\partial \zeta^{2}} \right) = -\frac{1}{E^{*} h^{*}} \frac{\alpha}{2} \ell \beta v_{s0}^{2},$$

$$w_{0} + \frac{h^{*2}}{12} \left(\alpha^{2} \frac{\partial^{2} w_{0}}{\partial \zeta^{2}} + \alpha^{4} \frac{\partial^{4} w_{0}}{\partial \zeta^{4}} \right) + \nu \alpha \frac{\partial u_{0}}{\partial \zeta} - \frac{\alpha^{2}}{2} \left(\frac{\partial w_{0}}{\partial \zeta} \right)^{2} =$$

$$= \frac{1}{E^{*} h^{*}} \Big[p_{a} + \ell \beta v_{s0}^{2} (\mathcal{L} - \zeta) - \rho_{gr} g h_{0} \Big].$$
(2)

$$\begin{aligned} \alpha^{2} \frac{\partial^{2} u_{1}^{\prime}}{\partial \zeta^{2}} &- \frac{1-\nu}{2} u_{1}^{\prime} - \frac{1+\nu}{2} \alpha \frac{\partial v_{1}^{\prime}}{\partial \zeta} + \nu \alpha \frac{\partial w_{1}^{\prime}}{\partial \zeta} + f\left[\frac{1-\nu}{2} u_{0} - 2\alpha^{2} \frac{\partial^{2} u_{0}}{\partial \zeta^{2}} + \alpha(1-\nu) \frac{\partial w_{0}}{\partial \zeta}\right] - \\ &- \alpha^{3} \left(\frac{\partial w_{1}^{\prime}}{\partial \zeta} \frac{\partial^{2} w_{0}}{\partial \zeta^{2}} + \frac{\partial w_{0}}{\partial \zeta} \frac{\partial^{2} w_{1}}{\partial \zeta^{2}}\right) + 3\alpha^{3} f \cdot \frac{\partial w_{0}}{\partial \zeta} \frac{\partial^{2} w_{0}}{\partial \zeta^{2}} = \frac{\rho_{t} R_{0}^{2} \omega^{2}}{E^{*}} \frac{\partial^{2} u_{1}^{\prime}}{\partial \tau^{2}}; \\ &\frac{1-\nu}{2} \alpha^{2} \frac{\partial^{2} v_{1}^{\prime}}{\partial \zeta^{2}} - v_{1}^{\prime} - \frac{1}{E^{*}h^{*}} \frac{2u_{1}^{*}\mu}{R_{0} \left(0.5 - \ln \left|\frac{\gamma \rho_{gr} \varepsilon u_{1}^{*}}{4\mu}R_{0}\right|\right)} + \frac{1+\nu}{2} \alpha \frac{\partial u_{1}^{\prime}}{\partial \zeta} + \\ &+ w_{1}^{\prime} + f\left(w_{0} - \frac{3-\nu}{2} \alpha \frac{\partial u_{0}}{\partial \zeta}\right) - \alpha^{2} \frac{\partial w_{0}}{\partial \zeta} \frac{\partial w_{1}^{\prime}}{\partial \zeta} = \frac{\rho_{t} R_{0}^{2} \omega^{2}}{E^{*}} \frac{\partial^{2} v_{1}^{\prime}}{\partial \tau^{2}}; \\ &w_{1}^{\prime} + \frac{h^{*2}}{12} \left(\alpha^{4} \frac{\partial^{4} w_{1}^{\prime}}{\partial \zeta^{4}} - \alpha^{2} \frac{\partial^{2} w_{1}^{\prime}}{\partial \zeta^{2}}\right) + \nu \alpha \frac{\partial u_{1}^{\prime}}{\partial \zeta} - v_{1}^{\prime} + \\ &+ f\left[2\nu w_{0} + (1-\nu)\alpha \frac{\partial u_{0}}{\partial \zeta}\right] - \alpha^{2} \frac{\partial w_{0}}{\partial \zeta} \frac{\partial w_{1}^{\prime}}{\partial \zeta} + \frac{\alpha^{2}}{2} f\left(\frac{\partial w_{0}}{\partial \zeta}\right)^{2} = \\ &= \frac{1}{E^{*}h^{*}} \left[\rho_{f} v_{s0}^{2} f - \frac{2u_{1}^{*}\mu}{R_{0} \left(0.5 - \ln \left|\frac{\gamma \rho_{gr} \varepsilon u_{1}^{*}}{4\mu}R_{0}\right|\right)}\right] - \frac{\rho_{t} R_{0}^{2} \omega^{2}}{E^{*}} \frac{\partial^{2} w_{1}}{\partial \tau^{2}}. \end{aligned}$$
(3)

Здесь $\zeta = s/\ell$, $\tau = \omega t$, $u' = u/R_0$, $v' = v/R_0$, $w' = w/R_0$ – безразмерные длина дуги, время и перемещения; $\kappa(\zeta, \tau)$ – текущая кривизна осевой линии; ℓ , ω – характерные масштабы координаты и времени; μ – вязкость внешней среды; v_{s0} – скорость внутреннего потока; u^* – скорость поперечного движения трубы. Прочие обозначения стандартны и поясняются по мере необходимости. Системы уравнений дополнены однородными начальными условиями и краевыми условиями жесткого закрепления.

Решения уравнений (2), (3) связаны с перемещениями срединной поверхности трубы $u^\prime,\,v^\prime,\,w^\prime:$

$$u'(\zeta,\theta,\tau) = u_0(\zeta,\tau) + \varepsilon u'_1(\zeta,\tau)\sin\theta + O(\varepsilon^2); \quad v'(\zeta,\theta,\tau) = \varepsilon v'_1(\zeta,\tau)\cos\theta + O(\varepsilon^2);$$
$$w'(\zeta,\theta,\tau) = w_0(\zeta,\tau) + \varepsilon w'_1(\zeta,\tau)\sin\theta + O(\varepsilon^2).$$

Имеют место малые параметры и соотношения:

$$\varepsilon = R_0 \cdot \max |\kappa_0(\zeta)| \ll 1; \qquad \alpha = \frac{R_0}{\ell} \ll 1;$$

$$f(\zeta,\tau) = \frac{\kappa(\zeta,\tau)}{\max|\kappa_0(\zeta)|}; \qquad h^* = \frac{h}{R_0}; \qquad E^* = \frac{E}{1-\nu^2}.$$

2. Физические и геометрические параметры задач.

Для всех примеров приняты следующие физические параметры: плотность транспортируемой жидкости $\rho_f = 850 \,\mathrm{kr/m^3}$, плотность внешней среды $\rho_{gr} = 1700 \,\mathrm{kr/m^3}$, вязкость внешней среды $\mu = 10000 \,\mathrm{Ia} \cdot \mathrm{c^{-1}}$, плотность материала трубы $\rho_t = 7200 \,\mathrm{kr/m^3}$, толщина стенки трубы $h = 0.005 \,\mathrm{m}$, модуль Юнга материала трубы $E = 2,07 \cdot 10^{11} \,\mathrm{Ia}$, радиус трубы $R_0 = 0.3 \,\mathrm{m}$, длина осевой линии $L = 12\,000 \,\mathrm{m}$, коэффициент Пуассона материала трубы $\nu = 0.24$, глубина закладки трубопровода $h_0 = 5 \,\mathrm{m}$, скорость внутреннего потока $v_{s0} = 1 \,\mathrm{m/c}$; коэффициент вязкости жидкости $\nu_f = 0.6667 \,\mathrm{Ia} \cdot \mathrm{c}$, атмосферное давление $p_a = 10^5 \,\mathrm{Ia}$.

Другие физические и геометрические параметры задач представлены ниже, они варьируются в зависимости от формы осевой линии. Все примеры рассчитаны до достижения положения равновесия.

Задача 1. Профиль трубопровода – известная кривая "Локон Аньези" [7]:

$$y = \frac{A^3}{(x - x_0)^2 + A^2}; \quad 0 \le x \le 12000 \text{ M}, \quad x_0 = 6000 \text{ M}, \quad A = 200 \text{ M}.$$

Минимальный радиус кривизны оси min $|\rho_0| \approx 118.1$ м; расчетный интервал времени $T_{end} = 691208$ с, или $T_{end} = 8$ суток.

Задача 2. Профиль трубопровода – кубическая парабола:

$$y = 10^{-8} \cdot x(x - 6000)(x - 12000), \quad 0 \le x \le 12000$$
 м.

Параметры: min $|\rho_0| \approx 3951.5$ м; $T_{end} = 864008$ с, или $T_{end} = 10$ суток.

Задача 3. Профиль трубопровода – арка (парабола):

$$y = Ax(x - x_0), \quad A = 5.56 \cdot 10^{-6}, \quad x_0 = 12\,000$$
 м, $0 \le x \le 12000$ м.

Параметры: min $|\rho_0| \approx 71408$ м; $T_{end} = 2073604$ с, или $T_{end} = 24$ суток.

3. Результаты численного анализа.

В результате численных экспериментов найдены функции: перемещения осевой линии $w_n(s,t)$; продольные и угловые деформации стенки трубы $\varepsilon_1(s,\theta), \omega(s,\theta)$ в конечный момент времени $t = T_{end}$; координаты осевой линии x(s,t), y(s,t).

На рис. 1 показаны перемещения осевой линии и угловые деформации в трубе для задачи 1. В данном случае сильнее всего искажаются сечения трубы, близкие к точкам максимального перегиба начального профиля (в середине оси), там же – максимальные перемещения; это интуитивно ясно из механики и геометрии.

На рис. 2 показаны перемещения осевой линии и ее координаты при t = 0, $t = T_{end}$ для задачи 2. Профиль сдвигается асимметрично вниз в связи с тем, что в математической модели учтена сила увлечения стенки трубы внутренним потоком за счет трения.

Продольные и угловые деформации стенки показаны на рис. 3. Видно, как искажаются поперечные сечения трубы по ее длине. Особенно сильно это происходит, как и следовало ожидать, в окрестности дальней точки закрепления s = L, но график угловых деформаций показывает, что депланация сечений происходит по всей длине трубы.

Искажение формы поперечного сечения цилиндрической полубезмоментной оболочки под действием бимоментной нагрузки описано В.З. Власовым [8]. Здесь такая депланация установлена численным экспериментом в более общем случае.

Рис. 1. Перемещения (слева) и деформации стенки, задача 1.

Рис. 2. Перемещения стенок и координаты оси трубы, задача 2.

Рис. 3. Продольные (слева) и угловые деформации стенок, задача 2.

Задача 3 является наиболее простым примером из всех, но требует наибольшего времени для достижения состояния равновесия. Перемещения осевой линии и ее координаты показаны на рис. 4. Также сохраняются распространяющиеся по всей длине

Рис. 4. Перемещения стенок и координаты оси трубы, задача 3.

депланации поперечного сечения, что видно из расчета угловых деформаций, рис. 5. Эти деформации конечны в малой окрестности точки s = L, но искажения поперечного

Рис. 5. Угловые деформации в задаче 3, 3D-график и изолинии.

сечения распространяются по крайней мере на расстояние $\Delta s \approx 0.1L$, то есть депланацию нельзя считать краевым эффектом, так как $\Delta s \gg R_0$.

Заключение.

Итак, получена картина перемещения и деформирования трубопроводов различных профилей в приближении теории технических оболочек. В приведенных примерах перемещения конечны ($w_n \gg R_0$), а деформации не всюду малы (в **задаче 1** $\omega \approx 0.002$ в середине осевой линии).

График продольных деформаций на рис. 2 наглядно демонстрирует неравномерность ε_1 в одинаковых поперечных сечениях (при s = const), что совпадает с картиной депланации сечений в [8]. Таким образом, поперечные сечения протяженного трубопровода при наличии даже слабого изгиба профиля могут испытывать депланацию, которую нельзя считать краевым эффектом. Для тонкостенных стержней открытого профиля это показано в [9], для труб средней длины и специальной бимоментной нагрузке — в [8]. Здесь факт депланации сечений установлен для протяженных изогнутых труб.

Численные эксперименты данной работы согласованы с качественными выводами [2], [8], что подтверждает адекватность математической модели [6]. Результаты расче-

тов по предложенной модели легко понять на качественном уровне, основываясь на фундаментальных законах механики.

Список литературы

- ФЕОДОСЬЕВ В.И. О колебаниях и устойчивости трубы при протекании через нее жидкости // Инж. сб. 1951. Т.10. С. 169–170.
- [2] TOWHATA I. Geotechnical Earthquake Engineering. Springer-Verlag: Berlin, Heidelberg, 2008. 684 p.
- [3] ТИМОШЕНКО С.П. Выпучивание пологих стержней и слегка искривленных пластин // Тимошенко С.П. Устойчивость стержней, пластин и оболочек. М.: Наука, 1971. С.662–669.
- [4] ВЛАСОВ В.З. Общая теория оболочек и ее приложения в технике // Власов В.З. Избранные труды. Т.1. М.: Изд-во АН СССР, 1962. С. 15–439.
- [5] Рукавишников В.А., Ткаченко О.П. Нелинейные уравнения движения растяжимого подземного трубопровода: вывод и численное исследование // Прикладная механика и техническая физика. 2003. Т.44, № 4. С. 144-150.
- [6] Рукавишников В.А., Ткаченко О.П. Приближенное решение нелинейной задачи о деформировании подземного трубопровода // Сибирский журнал индустриальной математики. 2010. Т. XIII, № 4(44). С. 97–108.
- [7] РАЙХМИСТ Р.Б. Графики функций: Справ. пособие для вузов. М.: Высш. шк., 1991. 160 с.
- [8] ВЛАСОВ В.З. Принципы построения общей технической теории оболочек // Власов В.З. Избранные труды. Т.2. М.: Изд-во АН СССР, 1963. С. 467–503.
- [9] ВЛАСОВ В.З. Тонкостенные упругие стержни. М.: Физматлит, 1959. 568 с.