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Abstract: Stability of compressible flat plate boundary layer on porous surface is investigated in the 

framework of linear stability theory. Stabilizing influence of permeable coating on the second instability 

mode in hypersonic boundary layer is confirmed. First mode in supersonic Mach 2 boundary layer 

becomes more unstable under the influence of porosity. However principal possibility of the first mode 

stabilization is found. It is shown that stabilizing or destabilizing influence of porous coating is 

determined by phase shift between pressure and normal velocity disturbances at the wall. Existence of a 

certain optimal phase shift is revealed which leads to a reduction of the boundary layer eigen unstable 

oscillations growth rates. Combined influence of porosity and surface cooling has also been studied. 
 

1   Introduction.   Solution of different technical issues concerning motion of vehicles in fluids or 

gases requires a control of the boundary layer in such a way that the whole flow acquires qualities 

desirable for some special purposes. Gas suction out of the boundary layer through a permeable 

surface is an example of such a control. Experiments show that by means of a suction it is possible 

to shift boundary layer transition from laminar into turbulent state more downstream. Reynolds 

number of transition about 6Re 40 10c    can be experimentally obtained in the subsonic flow. 

Nowadays a great number of theoretical papers exist which explain a stabilizing role of a suction by 

reduction of the boundary layer thickness and formation of a more stable mean velocity profile.  

Thus, both experimental, and the theoretical data indicate a principal possibility of the boundary 

layer stabilization by means of a suction. More detailed information about flow stabilization at 

subsonic and also at supersonic speeds can be found in [1, 2] and in a number of other papers. 

Theoretical papers on suction boundary layer stability usually do not take into consideration some 

properties of permeable surfaces that can influence the flow stability. Influence of surface properties 

on stability of a subsonic boundary layer was investigated for the first time in the theoretical paper 

of S.A.Gaponov [3]. In his subsequent papers he has proposed to use the impedance relation 

between normal velocity and pressure perturbation at permeable surface, also taking into account 

compressibility of a gas. Such an impedance relation has successfully been used not only for study 

subsonic but for low supersonic [4] boundary layers. For a long time [3,4] were the only theoretical 

papers on the subject, while experimental verification of the theory was not possible at that time. 

Lack of experiments inversely restrained further development of theoretical modeling. However, a 

successful experimental investigation of the influence of porous coatings on the stability of Mach 

M 6 cold hypersonic boundary layer has been performed in [5]. Linear stability of porous surface 

hypersonic boundary layers in relation to the so called second instability mode was investigated also 

theoretically in [6] on a basis of given by S.A.Gaponov theoretical impedance relations. So, at 

present, we are sure that successful experiments are possible also at supersonic speeds where 

influence of surface permeability on the boundary layer laminar-turbulent transition differs in 

relation to the case of a hypersonic boundary layer. This distinction is caused by the fact that at 

supersonic speeds transition is caused primarily by the first (vortical) instability mode while at 

hypersonic speeds the important role in transition plays the second mode which has an acoustic 

nature. Investigations of the first mode are more complicated because such waves are oblique 

(three-dimensional, 3D) while most unstable second instability modes are plane or two-dimensional 

(2D) waves. Also it is worth to mention that in the range of Mach numbers 3 M 5  a competition 

of two instability modes takes place, and therefore it is necessary to study both of them.  
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In the present paper some results of theoretical investigation of linear stability of supersonic 

Mach M 2 and hypersonic M 5.3  boundary layers are presented. 
 

2   Linear stability analysis.   We consider compressible boundary layer on a flat plate assuming a 

perfect gas with constant Prandtl number Pr 0.72 , specific heat ratio 1.4  ; it was assumed that 

viscosity   is a function of temperature only according to the Sutherland relation. In the framework 

of a linear stability problem the flow-field in a compressible boundary layer can be represented as a 

combination of the mean flow and a small amplitude disturbance. Basic flow is considered in a self-

similar approximation [7]. Equations for disturbance evolution can be obtained by linearization of 

the equations of motion of viscous compressible heat conducting gas (Navier-Stokes, continuity and 

energy equations). Solution to the problem can be represented as a combination of harmonic waves: 

    
0

q ( ) exp
x

x
A x y i x dx i z i t        , 

where  , ,x y z  are streamwise, normal and spanwise coordinates respectively, wave vector 

 ,k    is composed of streamwise   and spanwise   wave numbers, 2 f  , f  - 

frequency. For the sought vector  , , , , , , ,
T

u u v p w w     composed of disturbance velocities

 , ,u v w , pressure p  and temperature  and their derivatives with respect to y , denoted by primes, 

one can receive the linear boundary value problem for the system of linear ordinary differential 
equations: 

  ,
d

L U T
dy


  ,  (1) 

where L – is the linear Lees-Lin operator of the eighth order. Nonzero elements of L  are given in 

[8] and are functions of the mean streamwise velocity and temperature profiles     ,U y T y  and 

of the wave parameters – frequencies and wave numbers. We consider the spatial stability problem, 

where frequency is regarded as a real value, while streamwise wave number is complex. 

Streamwise wave number r ii     is determined as an eigenvalue of the boundary value 

problem, while components of   are corresponding eigenfunctions. Thus i 0   describe unstable 

disturbances amplifying downstream, while waves with i 0   are stable and decay with 

increasing x . 

Boundary conditions for (1) at the BL outer edge are usual: 

 0  ,  y  , (2) 

while boundary conditions for disturbances at permeable surface were developed for the first time 

in [4-5] and have been applied in the present paper.  

We consider a surface of model coated by a porous layer of constant thickness 
*h (asterisk denotes 

dimensional values while variables without asterisk are made nondimensional with the boundary layer 

length scale). The layer is a flat plate perforated with cylindrical blind holes of constant radius *r  

oriented normally to the surface. We assume that pore radius and spacing between adjacent holes s  

are much smaller in comparison to boundary layer thickness ( )x  . Under such assumptions 

boundary conditions for disturbances at the surface can be represented as [4]: 

 (0) (0) (0) 0, (0) (0)u w v Kp    , (3) 

where complex factor K  is the acoustic admittance of the porous coating. The magnitude and the 

phase of K  are dependent of porous coating properties, boundary layer properties and wave 

disturbance parameters. It can be shown [4], that admittance K  can be written as  

  
0
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K h
Z

  ,  (4) 
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.Here M isthe Mach number at the boundary layer outer edge, w –density, 
* /r r   – 

nondimensional pore radius, /e e ex U   – Blasius length scale, Re /e e eU    – Reynolds 

number,   – circular frequency, 0 2,J J  – Bessel functions of the corresponding order, n  – coefficient 

of porosity, i.e. part of the surface covered by pores. Subscripts w and e stand for wall and boundary 

layer outer edge conditions respectively. Stability analysis has been performed by numerical integration 

of boundary value problem (1–3) by means of method of orthonormalizations [2]. 
 

3   Stability of compressible boundary layers on permeable surfaces.   Influence of the porous 

coating on boundary layer stability has been analyzed for supersonic Mach M 2e   boundary layer. 

Figs.1a, b present comparison of the stability diagrams for boundary layer on solid impermeable 

wall (Fig.1a) and for boundary layer on porous coating with porosity 0.5n   and pore radii 0.5r   

(Fig.1b). Contour plots of nondimensionalized spatial amplification rates 6/ Re 10i  in the plane 

reduced frequency 2/e e eF U   – Reynolds number for two-dimensional (2D,

 arctg 0r    ) waves are shown. The region of instability is filled with color. Computations 

have been performed for deep pores   tanh 1h  . It is seen that introduction of porous 

coating leads to considerable enlargement of unstable region and drastic destabilization of the 

boundary layer. Critical Reynolds number is reduced from Re 270cr   on the solid wall to 

Re 140cr   on porous wall while the range of unstable frequencies is expanded especially to the 

region of higher frequencies, from 
60 10 150F    to 

60 10 500F    respectively. Maximal 

amplification rate on porous surface 
i  becomes almost an order of magnitude higher in 

comparison with nonpermeable surface. 
 

 
(a) 

 
(b) 

Fig.1: Contour plot of nondimensional spatial growth rates 
6/ Re 10i   in the plane  ,ReF  at M 2e  , 0  :  

(a) 0r   and (b) 0.5n  , 0.5r  , h  . 
 

Additional computations have been performed to study dependency of the instability wave 

amplification rates from porous coating thickness h , porosity n  and pore sizes r . It was shown 

that enlargement of the porous coating thickness leads to the increase of amplification rates but this 

process is not monotonous: there is a certain value of h  where i  reaches its maximum. Further 

increase of h  will cause a certain reduction of i  and then limiting case of deep pores will be 

achieved   tanh 1h  . Thickness h  at which the limit is reached is dependent of the pore 
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radius and becomes larger for larger pores. For example, for pores with * 10 μmr  the thickness of 

the porous layer 0.5h   mm can be considered as large at Re 600 , 
650 10F   . 

Investigation of the growth rates of 3D instability waves shows that introduction of porous 

coating with increasing pore radius leads to monotonous growth of amplification rates for all 3D 

waves with different orientation angles  . However this destabilizing influence of porosity is 

maximal for 2D waves ( 0  ) while with increasing   the difference in the growth rate with the 

case of impermeable surface ( 0r  ) become smaller. So, generally, application of the porous 

coating at Mach M 2e  destabilizes boundary layer and accelerates the process of laminar-turbulent 

transition. 

Up to now we have considered the influence on 

boundary layer stability by the porous surface in 

the form of perforated plate. However now we 

briefly discuss general case of surface coating 

which ensures boundary conditions (3) but it is 

not limited to specific particular case of 

perforated plate. For a qualitative discussion an 

arbitrary value, which is not determined by (4), 

will be given to the admittance K .  

Fig.2 shows an example of the contour plot of 

spatial amplification rates on the plane absolute 

value of the wall admittance K  – phase of 

admittance arg K . Computations have been 

performed for the wave with
650 10F   , 0  , 

Re 600 . Fig.2 demonstrates a principal 

possibility of flow stabilization using special coating. Indeed, it is seen that in fact the character of 

influence of porous coating is determined by the phase shift between normal velocity and pressure 

disturbances at the wall (3) which is determined by the argument of the admittance arg K  and 

depending of these phase shift such an influence can be destabilizing  90 arg 180K   or 

stabilizing  90 arg 90K   . Magnitude, the strength of this influence that means change in the 

growth rate in comparison to the solid surface 0K   increases with increasing K  which can be 

made by enlargement of the pore radius, or porosity n , or both of them. Real perforated porosity, 

considered in this paper until now, gives a phase shift 135 arg 150K   (shown by the red solid 

line in the right part of Fig.2) depending on r , but this is located in the region of destabilization. 

However if it would be possible to fabricate a coating which is able to support a phase shift 

90 arg 60K   , with optimal arg 30K    for wave of that frequency, than it would lead to 

reduction of the disturbance growth rates and, consequently, to the  boundary layer stabilization. 

Similar computations have been performed for low hypersonic Mach M 5.3e   insulated flat 

plate boundary layer. Stability diagrams for solid and porous walls are shown at Figs.3a, b. At this 

Mach number the two unstable regions corresponding to the first and second instability modes are 

present. Comparison of these two diagrams shows that the instability domain stays approximately 

the same on porous surface. Porous coating attenuates the second mode instability: maximal spatial 

amplification rate reduces from 6/ Re 10 6i    to 3.5. Simultaneously instability region of the first 

mode merges completely with the second mode while corresponding growth rates become larger.  

So, the second instability mode which has an acoustic nature and plays dominant role in laminar-

turbulent transition in hypersonic boundary layers can be stabilized by the introduction of porous 

coating of the model surface.  
 

Fig.2:  Contour plot of nondimensional spatial growth 

rates 
6/ Re 10i   in the plane  ,argK K  at M 2e  , 

Re 600 , 650 10F   , 0  . 
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(a) 

 
(b) 

Fig.3:  Contour plot of nondimensional spatial growth rates 
6/ Re 10i   in the plane  ,ReF  at M 5.3e  , 0  : 

(a) impermeable surface, 0r   and (b)porous coating, 0.5n  , 1.0r  , h  . 
 

Figs.4a, b show contour plot of the growth rates on the plane K  –arg K  for waves of first and 

second modes respectively. One can see that for a “realistic” porous coating with increasing K  

along solid lines from arg 135K  at 0K   to arg 180K  at K  porosity gives 

destabilization of the first mode and stabilization of the second mode.  
 

 
(a) 

 
(b) 

Fig.4:  Contour plot of nondimensional spatial growth rates 
6/ Re 10i   in the plane  ,argK K at M 5.3e  , 

Re 1040 , 0.5n  , 1.0r  , 0  : (a)first mode, 658 10F   and (b)second mode, 6140 10F   . 

 

Phase shift responsible for boundary layer stabilization or destabilization is essentially dependent 

of the internal structure, organization of permeable coating. One example of a structure with 

permeable surface has been investigated in [9], when flow stabilization was achieved at low 

subsonic velocities. 
 

4. Combined influence of porosity and surface cooling on stability.Fig.5 shows linear growth 

rates of disturbances at various values of porosity and three different values of reduced wall 

temperature for solid impermeable (n=0) and porous coated (n=0.5) walls.  

Fig.6 shows linear amplification rates of disturbances at М=5.35. Peak of the growth rate at high 

value of frequency
6150 10F   correspond to the second instability mode, while another smaller 

peak (in the low frequency region 
6120 10F   ) correlates with the first (vorticity) mode. One can 

see that linear growth rates of the second mode are much larger than corresponding values of -αi of 

the first mode on impermeable surface. On the porous surface amplification rates of both modes 

become of the same order of magnitude. 
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Fig.5:  Linear growth rates-αi of 3D vorticity (first) mode 

with reduced frequency F=0.2∙10
-4

versus Reynolds 

number Re:  1-3 - TW =1.687, 1.4, 1.0 on impermeable (I) 

and porous (II - n=0.5) surface. 

Fig.6:Linear growth rates-αi of two- (2D) and three-

dimensional(3D) modes versus reduced frequency F at 

Re=1000, TW=1.587, on impermeable (I) and porous (II - 

n=0.5) surfaces. 

 

Summarizing, the performed investigation has revealed that wall cooling leads to a stabilization 

of vorticity perturbations and destabilization of acoustic oscillations in the boundary layer on 

impermeable surface. Influence of the porous coating on boundary layer stability is just the opposite 

in comparison to the wall cooling. Porosity amplifies vortical (first mode) instability and attenuates 

acoustic (second mode) instability.  
 

5   Conclusion. Stability of compressible flat plate boundary layer on porous perforated surface has 

been studied in the framework of linear stability theory. Performed computations are in a good 

quantitative agreement with earlier calculations of other authors and confirm stabilizing influence of 

porous coating on second instability mode. It is shown that first instability mode which is 

dominating the boundary layer transition process at M 2  is destabilized on permeable surface 

independently of all influencing parameters such as pore radius and depth, porosity coefficient, 

Reynolds number for instability waves of different frequency and orientation. 

It is shown that stabilizing or destabilizing influence of the permeable coating depends on the 

phase shift between pressure and normal velocity perturbations in the instability wave propagating 

in the boundary layer. Optimal value of such phase shift will ensure suppression of the instability 

under various flow conditions. Thereby a theoretical principal possibility of supersonic (M=2) 

boundary layer stabilization on permeable coating is shown. 

This paper was partially supported by Russian Foundation of Basic Research (project 11-01-

00047-а). 
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