
Adaptive modelling of surface water �ows with wetting

and drying over complex bottom topographies

Andreas Dedner

Mathematics Institute, University of Warwick, Coventry, UK

e-mail: A.S.Dedner@warwick.ac.uk

Dietmar Kr�oner

Section of Applied Mathematics, University of Freiburg, Freiburg i. Br., Germany

e-mail: dietmar@mathematik.uni-freiburg.de

Nina Shokina

Section of Applied Mathematics, University of Freiburg, Freiburg i. Br., Germany

e-mail: shokina@mathematik.uni-freiburg.de

The adaptive modelling of surface water �ows over complex bottom topographies,
taking into account possible processes of wetting and drying is considered. This work
continues our investigations [1] within the project "Adaptive Hydrological Modelling
with Application in Water Industry"[2] of the Federal Ministry of Education and
Research of Germany. The 2D shallow water model is used, including bottom friction
and a viscosity term. The implementation is based on the DUNE-FEM module - a
modular toolbox for solving PDEs with grid-based methods [3, 4]. The problem is
numerically solved by the Runge-Kutta discontinuous Galerkin method [5]. A well-
balancing method [1] is used, based on a reformulation of the topography source term
in the balance law for the discharge. The wetting-drying treatment, based on the ideas
of [6], is incorporated into the model. The newly developed limiter [7] is used for the
method stabilization. The code is validated on several test problems with known exact
solutions and tested on few more complex problems with source, bottom friction and
di�usion terms.

1. Runge-Kutta discontinuous Galerkin method for shallow water

equations

Let us provide the formulation of the Runge-Kutta Discontinuous Galerkin method [5] for
the evolution equations of a very general form:

∂tu(t, ·) = L[u(t, ·)](·) in ([0, T )× Ω) ⊂ (IR× IRd), d ∈ {1, 2, 3}, (1)

with the spatial operator L[v] = S(v) − ∇ ·
(
F (v) − G(v)

)
, where v : Ω → Ψ ⊆ IRr

belongs to some suitable function space V , Ψ is the set of states for a given problem, S(v)
is a source term function, F (v) is the convective analytical �ux function, G(v) is the eddy
viscous analytical �ux function. The appropriate de�nition of u, S, F and G gives the 2D
shallow water equations:

u =

 h
hu
hv

 , F (u) =

 hu hv
hu2 + 1

2
gh2 huv

huv hv2 + 1
2
gh2

 , G(u) =

 0 0
νh∂u

∂x
νh∂u

∂y

νh ∂v
∂x

νh∂v
∂y

 , (2)
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S(u) = Sh(u) + Sbs(u) + Sbf (u) =

Sh

0
0

+

 0
−gh ∂b

∂x

−gh ∂b
∂y

+

 0
−ghIRx

−ghIRy

 . (3)

u = (u, v) is the velocity vector, h = h(t,x) is the water depth, measured from the bottom
positive upwards, b = b(x) is the bottom height, measured from the reference level positive
upwards. The total water height H = H(t,x) = h(t,x) + b(x) is also measured from the
reference level positive upwards, g is the gravity acceleration. ν = 0.6 1

h1/3

√
gn|u|h is the eddy

viscosity coe�cient, where n is the Manning coe�cient.

The source term Sh takes into account sources and sinks due to the coupling with the
groundwater �ow. The bottom slope term Sbs takes into account the bottom topography.
The bottom friction term Sbf contains the head loss IR, which is evaluated using the Darcy-

Weisbach formula IR = λu|u|
2gD

, where λ = 6.34 2gn2

D1/3 is the friction factor, D is the hydraulic
diameter, for the 2D SWE D = 4h, n is the Manning coe�cient. Additional forces, such as
bottom friction forces, Coriolis forces, tidal potential forces, wind surface stresses, can be
added. The proper initial and boundary conditions [8] have to be added to the equations.

For the spatial discretization, a discrete operator Lh is de�ned, mapping a discrete
function space Vh. We choose Vh := {ϕ : Ωh → IR ∈ L2(Ωh) | ϕ|E ∈ Pp(E) ∀E ∈ Th}, where
Pp(E) is the set of all polynomials of an order up p. The set Ωh ⊆ Ω is a polygonal
approximation of the domain Ω which is partitioned by a tesselation Th in the sense of
the grid de�nition from [9]. The discrete operator is given by

∫
Ωh

Lh[uh]ϕdx =
∑
E∈Th

∫
E

S(uh)ϕdx+
∑
E∈Th

∫
E

(F (uh) +G(uh) · ∇ϕdx−

−
∑
E∈Th

∫
∂E

ϕFh(u
+
h , u

−
h , . . .) +Gh(u

+
h , u

−
h , . . .) dσ ∀ϕ ∈ Vh. (4)

Here u+
h and u−

h are the values of the function uh on both sides of the element interface and
Fh(u, v,x), Gh(u, v,x) : V × V × IRd → IRd are numerical �ux functions. The discontinuous
Galerkin method is completely described by the functions S and F,G and the numerical
�uxes Fh, Gh and the space Vh. In this work, the Local-Lax-Friedrichs �ux function ([10])
is used as the numerical �ux Fh for the advection part. For the di�usion �ux Gh we use
the CDG2 method derived and analysed in [11]. This method is an e�cient variation of the
compact Discontinuous Galerkin method �rst suggested for elliptic problems in [12].

The RK-DGmethod is in general not stable for non-linear convection dominated problems
where steep gradients or strong shocks might appear, thus, we use the stabilization mechanism
[7], which was expanded in the context of our project to a speci�c criterion such as guaranteeing
the conservation of non-negative water level. A stabilized discrete operator is constructed
by concatenation of the DG operator Lh and a stabilization operator Πh: L̃h[vh(t, ·)] :=
(Lh ◦ Πh)[vh(t, ·)]. For the time discretization an operator Π̄h is used for the initial data on
each time step. The construction of Πh, Π̄h is given in [7].

The space discretization leads to a system of ODEs d
dt
uh(t) = L̃h[uh(t)] for the coe�cients

de�ning uh(t). An explicit Runge-Kutta method is used with the order k = p + 1, where p
is the polynomial degree of the basis functions used to construct the space Vh.
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2. Well-balancing

There have been many suggestions for the construction of well-balanced schemes in recent
years, some applied to the RK-DG scheme (see, for example, [13]). We suggest a new method
here, which is easy to implement in the DG framework as implemented in DUNE-FEM [14].

Our method is based on a simple reformulation of the topography source term in the
shallow water model. We focus on the balance law for the discharge q = (hu, hv) and neglect
the viscous �ux and the source term due to the ground water coupling since they do not
contribute to the problem of well balancing. In its original form this equation reads ∂tq+∇·
Fq = Sq where Fq is the �ux and Sq = −gh∇b (see (2)). The most important requirement
for a well-balanced scheme is to preserve a �lake at rest�, i.e., if u = 0, v = 0, and h = C − b
with some constant C, then Fq = Sq should be satis�ed also on a discrete level. Inserting
u = 0 and replacing b with C − h in the equation for the discharge, the balance of �ux and
source term is given by 1

2
∇h2 − h∇h = 0.

We start by rewriting the topology source term: Sq = −1
2
gh∇b − 1

2
∇ · (ghb) + 1

2
gb∇h.

Moving the divergence term to the left hand side and treating the topography b as an
additional unknown we arrive at:

∂th+∇ · q = 0, (5)

∂tb = 0, (6)

∂tq +∇ · (Fq +
g

2
hb) = −g

2
(h∇b− b∇h). (7)

Now in the DG context, the non-conservative products on the right hand side can be
discretized using the approach from [15], treating them as a source term together with a
measure on the boundary. We focus on the spatial discretization of the equation for the
discharge q, now denoting with h, b the discrete solutions de�ned by the DG framework, i.e.,
we assume that h, b are piecewise polynomial functions, where the topography is projected
into the same discrete space in which h is de�ned. The spatial discretization on a single
element T of the grid is given by:

LT [h, b, q] :=

∫
T

(Fq +
g

2
bh) · ∇ϕ−

∫
T

g

2
(h∇b− b∇h)ϕ−∫

∂T

(F̂q +
g

2
ĥbn) ϕ+

g

2
(h̃ϕ[b]− b̃ϕ[h]), ϕ ∈ Vh. (8)

Here we use the abbreviation F̂q and ĥb to denote numerical �ux functions, approximating
�uxes in normal direction over the cell boundaries (e.g. a Lax-Friedrichs �ux for Fq and

an averaging for hb). With h̃ϕ and b̃ϕ we denote some suitable averages and [b] = (b+ −
bT )n, [h] = (h+ − hT )n are the jumps of the (possibly) discontinuous discrete functions b, h
in the normal direction n; hT , bT denote the discrete functions on the element T and h+, b+

the values on neighbouring elements.
The test function ϕ is assumed to have support only on element T (which means that

ϕ+ = 0). It turns out that a very simple averaging process leads to good results, i.e., h̃ϕ =

h̃ϕ̃ = 1
4
ϕ(hT + h+) and b̃ϕ = 1

4
ϕ(bT + b+); but note that the method will work with a much

more general choice for the averaging procedure. To achieve well-balancing we focus on the
case q ≡ 0 and h+ b = C on each element, which characterizes a lake at rest. Note that both
b and h are assumed to belong to the same discrete space, so that h + b = C holds on the
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discrete level. In this scenario [b] = −[h] and the only assumption we make on the averaging

is that under these circumstances b̃ϕ = 1
2
Cϕ − h̃ϕ. The only assumption we make on the

underlying scheme is that in this situation F̂q =
g
2
ĥ2n. We thus arrive at:

LT [h, b, q] =

∫
T

g

2

(
h2 + (C − h)h

)
· ∇ϕ−

∫
T

g

2
(−h∇h− (C − h)∇h)ϕ−

−
∫
∂T

g

2
(ĥ2 + ĥb)nϕ+

g

2
(−h̃ϕ[h]− (

1

2
Cϕ− h̃ϕ)[h]) =

=
g

2
C

∫
T

(
h∇ϕ+∇hϕ

)
− g

2

∫
∂T

(ĥ2 + ĥb− 1

2
C(h+ − hT ))nϕ =

= −g

2

∫
∂T

(ĥ2 + ĥb− 1

2
C(h+ − hT )− ChT )nϕ =

= −g

2

∫
∂T

(ĥ2 + ĥb− C
1

2
(h+ + hT ))nϕ . (9)

For well-balancing we need LT [h, b, q] = 0, which is satis�ed if we choose ĥb = −ĥ2+C 1
2
(h++

hT ). Since b = C − h we have hb = Ch− h2 so that this is a reasonable assumption. If, for

example, Fq is given by the Lax-Friedrichs scheme, we have (due to q = 0) F̂q =
g
4
(h2

T+(h+)2)

so that ĥ2 = 1
2
(h2

T +(h+)2). With the simple choice of ĥb = 1
2
(hT bT +h+b+) = 1

2
(ChT −h2

T +

Ch+ − (h+)2) = −ĥ2 + C 1
2
(hT + h+) so that the modi�ed scheme is in fact well-balanced.

3. Wetting and Drying Treatment

The wetting and drying treatment used in the current work is based on the algorithm [6],
belonging to the thin slot algorithms. For more details and further references on thin slot
algorithms and wetting-drying treatments in general see [1]. According to [6] the so-called
wet-or-dry status �ags are initially set, marking each element E either �wet� (�ag = 1)
or �dry� (�ag = 0), and then updated at each k-th Runge-Kutta intermediate stage. The
stability condition for ∆t is based on the consideration of the balance between the mass in
the element and the outgoing discharge through its boundary. Every intermediate RK-stage
must preserve the positivity of a mean water depth in every cell. If this stability condition
shows that �ows empties an element through a considered boundary, then according to [6]
the so-called �re�ection numerical �ux� is evaluated, which prohibits mass transfer through
a boundary. If a considered boundary is an interface between two dry elements, then the
re�ection numerical �ux is used without checking a stability condition in order to do not
introduce an arti�cial mass exchange between dry elements. In our work we don't use this
condition for ∆t, but apply the re�ection �ux as soon as empting of an element is detected.
This simpler condition nonetheless gives good numerical results.

We implement the requirement as in [6] to cancel the gravity terms in dry elements in
order to avoid non-physical oscillations and to prevent dry elements from loosing their mass
by using the above described wet-or-dry status �ags in the mathematical model, setting
g = g0 in an element if it is �wet� and setting g = 0 if an element is �dry�. Thus, in our
implementation the status �ags belong to �thin water layer� shallow water mathematical
model, which seems to us very logical.

After the positivity of the mean water depth is guaranteed in each element, the so-called
Positive Depth operator [6] has to guarantee the positivity of water depth node-wise in each
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element.

The PD operatorΠPD
h is implemented together with the stabilization operator L̃h[vh(t, ·)] :=

(Lh ◦ Πh ◦ ΠPD
h )[vh(t, ·)]. See [6] for the details on the PD operator.

Currently triangular elements and linear approximations of water depth and discharges
are used in this algorithm. But due to the generic DUNE implementation it will possible to
broaden on other elements and higher order approximations in the future. We can not prove
the convergence of the developed algorithm, but the validation of the code shows only a small
error between numerical result and known exact solution for the series of test problems. Also
the realistic behaviour of the numerical solution for the problem with source/sink terms is
shown. See the section 4 for the details.

4. Numerical Results

The described algorithm is implemented using DUNE � the Distributed and Uni�ed Nu-
merics Environment [16] � a modular toolbox for solving partial di�erential equations with
grid-based methods [16]. The DUNE module DUNE-SWE is currently being developed for
numerical simulation of shallow water �ows with well-balancing, limiting and taking into
account wetting and drying processes. The Runge-Kutta Discontinuous Galerkin method for
solving the shallow water equations with wetting and drying is implemented on the basis of
DUNE-FEM module [4]. As both stabilization operator and wetting-drying treatment are
based on the same concept of keeping some quantity realistic, we implement them within
one pass [17].

The developed code is validated on problems with known exact solutions, where wetting-
drying processes occur. The results show good correspondence of numerical results and the
exact solution. See [1] for the details on the �lake at rest�, �dam break problem�, �drying
Riemann problem� and �parabolic bowl problem�. See also [1] for the numerical results of
the �source-sink� problem, which was the �rst step towards the coupled modelling of surface
and groundwater �ows. Figure 1 shows the results of the numerical modelling of the �ood
wave in the part of the real river bed taking into account bottom friction and viscosity.

Ðèñ. 1. Flood wave in the part of the real river bed.
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