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The investigation is devoted to the new inverse problems concerning the identification of coefficients in the second and third order terms of linear pseudoparabolic equation of filtration in a fissured rock. The coefficients depend on the permeability and hydraulic properties of the fissured rock, the intensity of the liquid transfer between the blocks and fissures. The physical and mathematical justification of possible statements of the inverse problems for pseudoparabolic equations is given. New kinds of the boundary conditions of overdetermination are discussed. Certain elliptic and parabolic inverse problems relevant to pseudoparabolic ones are considered.

Introduction
In 1960, Barenblatt, Zheltov and Kochina [1] proposed the basic concept in the theory of seepage (filtration) of homogeneous liquids in fissured rocks. A fissured rock is considered as a material consisting of pores and permeable blocks which are generally separated from each other by a system of fissures. Compared to the standard arguments of filtration in a porous medium the significant feature given in [1] lies in the fact that 1) two liquid pressures, both in the pores and in the fissures, are introduced at any point in a space and 2) the transfer of liquids between the fissures and the pores is taken into consideration. Under such an approach the model of the seepage of a liquid in a fissured rock is described by the system of equations [1] 
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where  u1=u1(t,x), u2= u2(t,x) are the pressures of the liquid in the fissures and pores, respectively; ( is the Laplacian operator; d1 and d2 are the coefficients of compressibility of the liquid and the blocks; m0 is the magnitude of the porosity of the blocks at standard pressure; ( is the viscosity of the liquid; v represents the permeability of fissures. The dimensionless coefficient a characterizes the intensity of the liquid transfer between the blocks and fissures. In general the model can include the nonlinearities arising from fluid type (liquid or gas), concentration (porosity, absorption or saturation) and the exchange rate [2].

Eliminating u2 from (1.1) we obtain for the pressure of the liquid in the fissures u1 the so-called fissured medium equation of pseudoparabolic type
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The parameter ( corresponds to the piezo-conductivity of fissured rock. The coefficient ( represents a specific characteristic of fissured rock. The pressure of the liquid in the pores u2 satisfies an analogous equation. Since the natural stratum is involved, the parameters in (1.2) should be determined on the basis of the investigation of their behaviour under the natural nonsteady-state conditions but not the tests carried out on rock speciments brought to the surface. This leads to the interest in studying the inverse problems for (1.2) and its analogue.

Pseudoparabolic equations of the form
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with various diﬀerential operators L1 and L2 of the even order in spacial variables are also arised in the mathematical models of the heat conduction [3], wave processes [4], quasistationary processes in semiconductors and magnetics [5] (for more details, see [5] and references therein). Similar equations appears in the models for ﬁltration of the two-phase ﬂow in porous media with the dynamic capillary pressure [6].
The investigation of inverse problems for pseudoparabolic equations goes back into 1980s. The ﬁrst result obtained by Rundell in [7] is concerned with the inverse problems of the identiﬁcation of an unknown source f in the (1.3) with linear operators L1 and L2, L1 = L2. Rundell proved the global existence and uniqueness theorems in the case that f depends only on x or t. As for the determination of unknown coeﬃcients in (1.3) we mention the result of Mamayusupov [8]. He proved the uniqueness theorem and found an algorithm for solving the inverse problem with respect to u(t, x), functions b(y), c(y) and a constant a for the equation
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provided that u(t, x, 0), uy(t, x, 0) and u(0, x, y) are given. Here δ(t, x, y) is the Dirac delta function. To the present author’s knowledge, inverse problems of the identiﬁcation of unknown variable coeﬃcients in the terms of the second and third order of (1.3) have not been posed and studied yet.

This work is concerned with the inverse problems of ﬁnding the unknown coeﬃcients k = k(t) or η = ((t) in equation
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where f is given. The physical and mathematical justiﬁcation of new statements of the inverse problems for (1.4) are discussed. 
Inverse problems on the identification of k(t)
The physical processes modeled by (1.4) occur in bounded domains. Therefore the initial and boundary conditions must be imposed for (1.4). To ﬁnd out mathematical formulation of these we start from the model (1.1).

Let a problem be considered in a domain of the stratum Ω ⊂ R3 with boundary ∂Ω, t ∈ (0, T) and T is a positive real number. The initial data for u1, u2 are [9] 
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respectively. Since the ﬁrst equation of (1.1) is elliptic, the boundary conditions for u1 can take the form
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where 
[image: image11.wmf]n

 is the outward unit normal to ∂Ω. u0 is given on Ω and A, B, β are given functions on (0,T)×∂Ω. From here and the second equation (1.1) we obtain the boundary conditions for u2:

[image: image12.wmf](

)

(

)

(

)

[

]

,

x

,

T

,

t

,

x

,

t

g

t

k

u

t

k

u

t

W

¶

Î

Î

=

+

h

0

2

2



[image: image13.wmf](

)

(

)

(

)

(

)

[

]

,

x

,

T

,

t

,

x

,

t

g

t

k

u

t

k

u

n

t

W

¶

Î

Î

=

+

h

¶

¶

0

2

2


or

[image: image14.wmf](

)

(

)

(

)

(

)

(

)

(

)

[

]

,

x

,

T

,

t

,

x

,

t

g

t

k

u

t

k

u

n

B

u

t

k

u

A

t

t

W

¶

Î

Î

=

+

h

¶

¶

+

+

h

0

2

2

2

2


Thus, we conclude that in general the initial data for (1.4) are given as
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where U0(x) is a known function. If k(t) ( 0, then among the possible types of the boundary conditions the most important can be written as the condition of the Dirichlet type
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the Neumann type
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and the general mixed type
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Here g1 and g2 are given functions on (0, T) × ∂Ω. In the case of u1 the Dirichlet data (2.6) with g1(t,x) = g(t,x) and g2(t,x) = ηgt(t,x) comes from (2.5). The formulae (2.7),(2.8) with the same functions g1 and g2 are deduced from the appropriate Neuman and mixed boundary conditions for u1. The boundary data for u2 are of the form (2.6)–(2.8) with g1(t,x) = g(t,x) and g2(t,x) ≡ 0. Thus, three direct initial boundary value problems can be posed for (1.4) when k(t) is known.

The inverse problem of identiﬁcation of the unknown coeﬃcient k(t) with every of the above boundary conditions is underdetermined, so that in order to recover k(t) we are enforced to impose an additional condition. The identiﬁcation of k(t) here can be based on the boundary data of the pointwise or integral type. This leads to the pointwise or integral condition of overdetermination, which is in general written as
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Here σ1, σ2 are real numbers, ω1(t,s), ω2(t,s) are given functions, x0 ∈ ∂Ω and Γ ⊆ ∂Ω. In the case of the Dirichlet boundary problem (1.4),(2.4),(2.5) after substituting (2.6) into (2.9) and (2.10) the conditions of overdetermination take the form
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respectively. Here
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If ω2(t,s) ≡ 1 and µ2 ≡ 0, then the integral condition means a given ﬂux of a liquid through the surface Γ, for instance, the total discharge of a liquid through the surface of the ground. Similar nonlocal conditions were applied to control problems in [10] and to elliptic inverse problem in [11].

In the case of the problems (1.4),(2.4),(2.7) and (1.4),(2.4),(2.8), as the condition of overdetermination, (2.9) or (2.10) are to be taken of the form
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respectively. In particular, for the problem (1.4),(2.4),(2.7)
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Inverse problems on the identification of ((t)
Let us consider now the inverse problem of the identification of an unknown coefficient ( = ((t) in the model (1.1) assuming that the other coefficients of (1.1) are given constants. In this case the pressures u1 and u2 satisfies equations
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and
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respectively. The initial data for u1, u2 are 
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The boundary conditions for u1 can take the form of (2.1)–(2.3) and implies the following boundary conditions for u2:
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             (3.6)
in wiew of (1.1)2. Thus, the direct initial boundary value problems for u1 and u2 differs from one another and should to be investigated independently.

The identiﬁcation of ((t) in (3.1) and (3.2) can be based on the appropriate boundary data of the pointwise or integral type as well as in the case of the unknown k(t). This leads to the pointwise and integral conditions of overdetermination, which are written for (3.1) as
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where (5 and (6 are given functions. In the case of the Dirichlet boundary problem for (3.1) after substituting (2.1) into (3.7) and (3.8) the conditions of overdetermination take the form
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In the case of the Neuman boundary problem substituting (2.2) into (3.7) and (3.8) gives
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respectively.
The identiﬁcation of ((t) in (3.2) can be based on the following pointwise or 
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or integral condition of overdetermination

[image: image47.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

[

]

.

T

,

t

,

t

s

s

,

t

u

k

u

t

n

s

,

t

u

k

u

t

t

t

0

d

8

2

2

2

1

2

2

Î

y

=

ú

û

ù

ê

ë

é

w

+

h

¶

¶

+

w

+

h

ò

G


In the case of the Dirichlet problem (3.2)–(3.4) substituting (3.4) into these formulae leads to the conditions
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In a similar manner, one can construct the appropriate conditions of overdetermination for the problems (3.2),(3.3),(3.5) and (3.2),(3.3),(3.6).
Summaries
We discussed certain new statements of the inverse problems for pseudoparabolic equations by the example of the linear ﬁssured rock equation. The conditions of overdetermination similar to those considered above are available for the linear pseudoparabolic equations (1.3) with the operators L1 and L2 of more general form and also for the nonlinear equations
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with various functions γ1 and γ2 arising in generalized models of the liquid ﬂow in porous media [2],[12].
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