МОДЕЛИРОВАНИЕ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ИНТЕНСИВНОСТЬЮ ПОДАЧИ РЕАГЕНТА ПРИ ДОБЫЧЕ МИНЕРАЛОВ МЕТОДОМ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ

Алибаева К.А., Калтаев А.

Казахский национальный университет имени аль-Фараби, Алматы, Казахстан e-mail: Karlygash.Alibaeva@kaznu.kz

In the present work modeling of process of in-situ leach mineral mining (ISL) is considered. As a mineral, uranium is considered and the sulfuric acid is used as a solvent reagent in the governing reaction, describing of uranium leaching process. Extraction degree of layer strongly depends on the input reagent concentration and the arrangement of wells at the in-situ leaching of minerals. Therefore, solution of optimization problem of mineral leaching process is reduced to solving two problems, one of which is a problem of optimal control the intensity of reagent supply, and another – optimal arrangement of wells. In present paper the optimization of ISL process by controling of the intensity of reagent supply is studied.

Введение. Процесс добычи минералов методом подземного выщелачивания (ПВ) заключается в закачке через закачные скважины растворителя в минералосодержащий пласт, фильтрации раствора сквозь рудное тело с избирательным растворением минерала и его переходом из твердой фазы в жидкую, и откачке минералосодержащего раствора через откачные скважины [1].

В качестве реагента при выщелачивании урана используют растворы серной кислоты, карбонат содержащих солей аммония, натрия, калия и т.д. Выбор реагента зависит от минералогических свойств рудных залежей. В Казахстане распространение получило сернокислотное выщелачивание.

Математическая и численная модели. Основная реакция для описания процесса выщелачивания урана сернокислотным раствором в схематизированной форме имеет вид [1, 2]

$$UO_3 + H_2 SO_4 = UO_2 SO_4 + H_2 O, (1)$$

что объясняется хорошей растворимостью оксидов шестивалентного урана в растворах серной кислоты, в то время как минералы четырехвалентного урана и коффинита в условиях подземного выщелачивания практически не взаимодействуют с растворами серной кислоты без добавления окислителей в растворы.

При разработке эксплуатационных блоков методом ПВ, пласт находится в насыщенном состоянии, поэтому раствор можно принять несжимаемым. Процесс фильтрации несжимаемого раствора (жидкости) в пласте, содержащем растворяемый минерал, описывается законом сохранения массы и фильтрации (закон Дарси) [3]

$$\operatorname{div} \mathbf{v} = W, \tag{2}$$

$$\mathbf{v} = -\frac{k}{\mu} grad \, p,\tag{3}$$

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) = -W, \tag{4}$$

где ρ – плотность жидкости, K_{xx}, K_{yy}, K_{zz} – коэффициенты фильтрации (гидропроводности) соответственно по направлениям x, y, z, W – сумма откачных и закачных скважин.

Ввиду низкой конценрации урана в пласте изменения пористости и плотности побочного продукта за счет растворения урана реагентом пренебрегаются. Система уравнений, описывающая массообменные процессы, протекающие при добыче урана методом подземного выщелачивания, запишется в виде [4]

$$\frac{\partial C_m}{\partial t} = -\gamma \varepsilon C_R^0 \bar{C}_m \bar{C}_r \tag{5}$$

$$\frac{\partial \varepsilon \bar{C}_r}{\partial t} = \operatorname{div} \left(\varepsilon D g r a d \bar{C}_r - \mathbf{V} \bar{C}_r \right) - \nu_1 \gamma \varepsilon C_m^0 \bar{C}_m \bar{C}_r - \sum_d Q \delta \left(x_d, y_d, z \right) \bar{C}_r + \sum_p Q \delta \left(x - x_{0p}, y - y_0, z \right)$$
(6)

$$\frac{\partial \varepsilon \bar{C}_p}{\partial t} = \operatorname{div}\left(\varepsilon D g r a d \bar{C}_p - \mathbf{V} \bar{C}_p\right) + \nu_1 \gamma \varepsilon C_m^0 \bar{C}_m \bar{C}_r - \sum_p Q \delta\left(x - x_{0\,p}, y - y_0, z\right) \bar{C}_p, \quad (7)$$

где

$$\bar{C}_m = \frac{C_m}{C_m^0}, \quad \bar{C}_r = \frac{C_r}{C_r^0}, \\ \bar{C}_p = \frac{C_p \nu_1}{C_r^0 \nu_2},$$
(8)

здесь V – скорость фильтрации, γ – коэффициент характеризующий скорость реакции, C_m - концентрация урана в твердой фазе, C_r - концентрация, серной кислоты в растворе, Cp - концентрация полезного компонента (урана) в растворе, Q- дебиты скважин ($Q_d < 0$ для откачивающих скважин, $Q_p > 0$ для нагнетательных скважин), ε – пористость пласта, $\nu_1 = \nu_r R / \nu_m M$, $\nu_2 = \nu_p P / \nu_m M$, C_m^0 – начальное содержание минерала в пласте, C_m^0 - начальная концентрация минерала в твердой фазе, C_r^0 - концентрация реагента на откачной скважине, $D_{i,j}$ – коэффициент гидродисперсии, определяемый следующим образом

$$\begin{cases} D_{xx} = \frac{\alpha_l u^2}{|V|} + \frac{\alpha_t v^2}{|V|} + \frac{\alpha_t w^2}{|V|} + D^* \\ D_{yy} = \frac{\alpha_l v^2}{|V|} + \frac{\alpha_t u^2}{|V|} + \frac{\alpha_t w^2}{|V|} + D^*, \\ D_{zz} = \frac{\alpha_l w^2}{|V|} + \frac{\alpha_t u^2}{|V|} + \frac{\alpha_t v^2}{|V|} + D^* \end{cases}$$
(9)

где α_l , α_t – коэффициенты продольной и поперечной дисперсии, D* – коэффициент молекулярной диффузии.

Уравнения (5) – (7) решаются при следующих начальных и граничных условиях: в начальный момент известно распределение минерала в пласте, концентрация раствора и растворенного полезного компонента отсутствуют

$$\begin{array}{l} C_m|_{t=0} = C_m^0, \ C_r|_{t=0} = C_r^0, \ C_p|_{t=0} = C_p^0\\ C_m|_S = 0, \ C_r|_S = 0, \ C_p|_S = 0 \end{array}$$
(10)

При подземном выщелачивании степень выработки пласта сильно зависит от входной концентрации реагента и расположения сети скважин. Поэтому решение задачи оптимизации процесса выщелачивания минерала сводится к решению двух задач, одной из которых является задача оптимального управления интенсивностью подачи реагента и другой оптимальное расположение сети скважин.

В ходе выщелачивания, когда расположения скважин уже известно, происходящим в пласте процессом можно управлять только входной концентрацией реагента на закачной скважине. Поэтому в рассматриваемой работе в качестве управления взята концентрация реагента C_r^0 . Управляя значениями концентрации реагента C_r^0 на закачной скважине, исследовано изменение значения минерала в жидкой фазе C_p^0 . При этом задаваемая на закачной скважине величина концентрации реагента не должна превышать определенного максимального значения. Соответственно, задача оптимального управления процессом сводится к управлению интенсивностью подачи реагента на на-гнетающей скважине.

На значения входной концентрации реагента налагается два ограничения:

1. неравенство, ограничивающее величину концентрации реагента на каждой закачной скважине

$$0 \le C_{rk}^0(t) \le C_{r\max}^0,$$
(11)

2. равенство суммарной концентрации реагента на всех закачных скважинах определенному значению в каждый момент времени t

$$\sum_{k} \int_{0}^{T} C_{rk}^{0}(t) dt = C_{R}$$
(12)

где k – количество закачных скважин.

Целевая функция для данной задачи имеет вид

$$f = \sum_{d} \int_{0}^{T} C_{p}(x_{d}, y_{d}, t) dt \Rightarrow \max$$
(13)

где d- количество откачных скважин, C_p- концентрация минерала в жидкой фазе.

Алгоритм решения задачи таков: Задается начальное приближение C_r^0 , решается прямая задача, которая подразумевает решение системы уравнений, описывающих процесс растворения минерала из продуктивного пласта при фильтрации реагентосодержащего раствора, в частности: уравнение для гидродинамического напора (4) решается с использованием итерационного метода верхней релаксации, поле скоростей определяется из закона Дарси (2), система уравнений растворения минерала (5), переноса жидкого раствора (6) и растворенного минерала (7) решается совместно схемой Кранка-Никольсона. По найденным значениям концентрации полезного компонента вычисляется целевая функция (13).

Далее решается обратная задача, в которой с помощью программного пакета вычисляется градиент целевой функции ∇f . Используя результаты прямой и обратной задачи, решается оптимизацинная задача (11)-(13), посредством которой определяется оптимальные значения интенсивности подачи реагента на закачной скважине.

При моделировании выщелачивания урана раствором серной кислоты рассмотрены линейное и гексагональное распределения скважин. В силу того, что на месторождениях зачастую используются линейная схема расположения скважин, тестовый расчет проведен для блока месторождения шириной 20 м. и длиной 40 м., состоящего из трех скважин: двух закачных и одной откачной (Рисунок 1а).

Рис. 1. Схематический рисунок рассматриваемой области: a) линейное расположение сети скважин в случае 3-х скважин: по краям – закачивающие, по середине – откачивающая; b) гексагональное расположение сети скважин: по краям – закачивающие, по середине – откачивающая

Рис. 2. Распределение давления и изолинии концентрации: a) распределение давления, b) реагент, c) минерал в твердой фазе, d) полезный компонент в жидкой фазе, при t = 100 сут. (вертикальное сечение вдоль скважины).

Рис. 3. Зависимость степень выработки пласта и концентрации минерала на откачной скважине со временем для случаев гексагонального расположения скважин: 1 - степень выработки месторождения; 2 - относительные концентрации минерала на откачной скважине

Рис. 4. Оптимальные значения концентрации реагента на закачных скважинах при разных ограничениях.

На рисунке 2 приведены распределения давления и изолинии концентраций реагента, минерала в твердой фазе и полезного компонента в жидкой фазе, при t = 100 сут. (вертикальное сечение вдоль скважины).

На рисунке 3 приведена зависимость степени выработки пласта и концентрации минерала на откачной скважине со временем для случаев гексагонального расположения скважин. Схема показывает, что при 70%-ном извлечении концентрация минерала на откачной скважине доходить до максимального значения, и при дальнейшем извлечении минерала за счет добывании концентрация минерала уменьшается.

На рисунке 4 (а) и (б) представлены оптимальные значения концентрации реагента на закачных скважинах при выполнении ограничений (11) и (12) соответственно.

Заключение. В данной работе разработана модель оптимизационной задачи для физико-химического процесса, происходящего в минералосодержащем пласте при ПВ минерала.

В результате численных исследований получены гидродинамический напор и поле скоростей в пласте под действием сети скважин, распределения концентраций реагента, минерала в твердой и жидкой фазе. Получены оптимальные значения концентрации реагента на закачных скважинах. Исследовано влияние интенсивности подачи реагента на степень извлечения и время извлечения минерала при добыче минерала методом подземного выщелачивания.

Созданная модель для определения оптимальных режимов подачи раствора при добыче урана может применяться и для месторождений других полезных ископаемых, разрабатываемых методом подземного скважинного выщелачивания.

Список литературы

- [1] Добыча урана методом подземного выщелачивания / под ред. Мамилова.М.: Атомиздат, 1980. 248 с.
- [2] ШЕСТАКОВ В.М. Гидрогеодинамика.М.: Изд-во МГУ, 1995. 368 с.

- [3] БАРЕНБЛАТТ Г.И., ЕНТОВ В.И., РЫЖИК В.М. Движение жидкостей и газов в природных пластах. М.: Недра, 1984г. 211 с.
- [4] ДАНАЕВ Н.Т., КОРСАКОВА Н.К., ПЕНЬКОВСКИЙ В.И. Массоперенос в прискважинной зоне и электромагнитный каротаж пласта. А.: Казах университеті, 2005. 180 с.
- [5] О динамике подземного выщелачивания полезных ископаемых на основе математического и физического моделирования / В.С. Голубев, В.А. Грабовников, Г.Н. Кричевец и др. В кн.: Математическое и физическое моделирование рудо-образующих процессов. М., 1978, с. 122-142
- [6] MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reaction of Contaminants in Groundwater Systems; Documentation and User's Guide, by Chunmiao Zheng, P. Patrick Wang, Department of Geological Sciences, University of Alabama, 1999, 160 p.
- [7] DAVID G. LUENBERGER. Linear and nonlinear programming. Stanford University. 1984.
- [8] АТТЕКОВ А.В., ГАЛКИН С.В., ЗАРУБИН В.С. Методы оптимизации. М.: Изд-во МГТУ им. Н.Э.Баумана, 2003.