On Hybrid Method for Medium-Term Multi-Product Continuous Plant Scheduling

Pavel A. Borisovsky, Anton V. Eremeev Omsk Branch of Sobolev Institute of Mathematics SB RAS, Omsk, Russia, Omsk, Russia

> Josef Kallrath BASF SE, Ludwigshafen, Germany

> > ●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Plant structure

Feed Transfer -> Feed Silo -> Extruder -> Product Silo -> Filling Unit

Example of a single production stage

Special conditions:

- Sequence dependent setup times for extrusions
- Weekend ban filling of some products

Solution Approach

Decomposition Scheme:

The whole scheduling period is decomposed to half-day horizons.

Upper-level optimization model: choose the products to be planned in each horizon.

Lower-level optimization model: Construct the schedule in the horizon.

Shaik, M.A., Floudas, C.A., Kallrath, J., Pitz, H.-J., Production scheduling of a large-scale industrial continuous plant: short-term and medium-term scheduling. Computers & Chemical Engineering (2008) In press. Scheduling.

Lower-level optimization model

Binary variables:

 $\delta_{i,n}$ equals 1 if task i is allocated at event point n.

Positive variables:

 $m{b}_{i,n}$ is the amount produced by task $m{i}$ at event point $m{n}$. $m{t}_{i,n}^s$ is the start task $m{i}$ at event point $m{n}$. $m{t}_{i,n}^s$ is the finish task $m{i}$ at event point $m{n}$.

16 tasks (ft_red, ft_green, ft_blue, fs_red, fs_green, fs_blue, e_red, e_green, e_blue, ps_red, ps_green, ps_blue, pf_red, pf_green, pf_blue, ch_black), 3 event pounts Number of binary variables is $16 \times 3 = 48$.

Lower-level optimization model: System of constraints

• Allocation of tasks in event points

One event point contains not more that one task; If material is transferred from one task to another, then both tasks

are located in the same event point;

• Material balance constraints

Produced amount must fit minimal and maximal capacities of a unit; If material is transferred from one task to another, then produced amount is equal to consumed amount;

• Timing constraints

Duration of a task depends on its amount;

Tasks on the same unit do not overlap;

If material is transferred from one task to another, the tasks must be synchrinized in time;

Sequnce dependent changeovers, week-end ban, etc.

Hybrid Approach: I Optimizing the extrusion tasks

 $S = \{1, 2, ..., n\}$ is the set of products; $U = \{1, 2, ..., m\}$ is the set of units; $I = \{1, 2, ..., l\}$ is the set of tasks;

 $oldsymbol{D}_s$ is the demand on product $oldsymbol{s}$;

For each task $i \in I$ it is given: u_i is the suitable unit (one only) s_i is the output product (one only) r_i is the production rate. T_i^{min} is the minimal possible duration of task i

 s_{ij} is the setup time if i and j are performed on the same unit

Objective: minimize Makespan

Genetic Algorithm

Representation of solutions

 $\Pi = (i_1, i_2, ..., i_l)$ tasks permutation; $L = (L_1, L_2, ..., L_m)$, where L_u is the maximal allowed number of tasks to be placed on unit u;

Example: Tasks 1,2,3,4 can be performed on unit 1, Tasks 5,6,7,8,9 can be performed on unit 2.

Some possible solution

 $egin{array}{l} \Pi = (4,7,5,2,3,9,1,8,6) \ L = (2,3) \end{array}$

corresponds to the following assignment:

Unit 1: 4,2 Unit 2: 7,5,9

LP formulation to complete the schedule

Solution $(\Pi, L,)$ defines the set of tasks to be performed, and the sequence of tasks. The changeover times can be calculated straightforwardly. To complete the schedule it is enough to determine the **durations** of the tasks.

Let $I(\Pi, L, s)$ be the set of tasks producing product s, $Ch(\Pi, L, u)$ be the sum of changeover time on unit u.

Recall that r_i is a production rate of task i. D_s is a demand on product s.

Positive variables: $au_i \geq 0$ is the duration of task i.

LP Model

Objective: minimize Makespan

$\min C_{\max}$

Subject to:

1. Demand satisfaction constraint:

$$\sum_{i\in I(\Pi,L,s)}r_i au_i\geq D_s.$$

2. Estimation of Makespan:

$$\sum_{i\in T} au_i \leq C_{ ext{max}} - Ch(\Pi,L,u).$$

Scheme of Genetic Algorithm

- 1. Generate initial population $\Pi^{(0)}$.
- 2. For t := 1 to t_{max} do 2.1 $\Pi^{(t)} = \Pi^{(t-1)}$

2.2 Apply selection operator to choose p_1, p_2 from $\Pi^{(t)}$.

2.3 Apply $\operatorname{crossover}$ operator to p_1 и p_2 to generate new solutions c_1 and c_2 .

2.4 Apply mutation operator: $c_1' = \mathcal{M}(c_1)$ in $c_2' = \mathcal{M}(c_2)$.

2.5 Remove two worst solutions q_1, q_2 from $\Pi^{(t)}$ and add c'_1 and c'_2 .

Tournament selection: Choose randomly s solutions and return the best among them.

Partially mapped crossover (PMX):

Mutation: Choose randomly k and l, and exchange j_k and j_l .

Hybrid Approach: II Solving the basic problem

Decomposition Scheme:

Weekday horizons (5 days) Weekend horizons (2 days)

Solving the short-term problem:

- 1. Start from empty schedule (fix all binary variables to zero).
- $\mathbf{2.}$ Run the GA to find a schedule for extruders.
- 3. Take the earliest extrusion task from the GA schedule.
- 4. Unfix the binary variables corresponding to the selected extrusion task and all the auxilary tasks related to it.
- 5. Solve the subproblem and fix the binary variables to their values.

Genetic Solution and the Actual Schedule

)First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Whole schedule for extruders

Extrusion tasks in the solution: 1057 All tasks in the solution: 4697 Event points used: 211

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Experimental Results

Articles: 120 Extruders: 10 Extrusion tasks: 172

	Pure	Decomposition	Hybrid
	Decomposition	+ Greedy	
Underproduction, %	0.96	0.02	0.07
Number of changeovers	324	194	115
Total changeovers duration	930	851	490
Solving time	16h	12h	6h