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Optimal estimation problem

Signal model is described by the Itô SDEs with a compound
Poisson process:

dX(t) = f
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dW (t)

+

∫
Rq

v
(
t,X(t−), ξ

)
ν(dt× dξ), X(0) = X0, (1)

where

t ∈ T = [t0, T ] is a time, X ∈ Rn is a state,

f(t, x) : T×Rn → Rn, σ(t, x) : T×Rn → Rn×s,

W (t) is s-dimensional Wiener process,

v(t, x, ξ) : T×Rn × Rq → Rn,

ν is the Poisson random measure on T× Rq with the
characteristic measure Πν , π(t, x, ξ) : T×Rn × Rq → R+,

X0 is an initial state with a probability density ϕ0(x).
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Optimal estimation problem

Let λ(t, x) : T×Rn → R+ denote the intensity and let
ψ(t, δ) : T×Rn → R+ denote the probability density
function for jumps (random increments of the state vector).
Thus, for v(t, x, ξ) = ξ

Pr
(
P (t+ ∆t)− P (t) = 1 |X(t) = x

)
= λ(t, x)∆t+ o(∆t) (2)

for small ∆t > 0, and

X(τj) = X(τ−j ) + ∆j , j = 1, 2, . . . , (3)

where Pr is a probability, P (t) is the Poisson process,
ψ(τj , δ) is the probability density function for ∆j , {τj} are
points of the Poisson process P (t), τ0 = 0.
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Optimal estimation problem

Observation model is described by the Itô SDEs:

dY (t) = c
(
t,X(t)

)
dt+ ζ(t)dV (t), Y (0) = Y0 = 0, (4)

where
Y ∈ Rm is an observation,
c(t, x) : T×Rn → Rm, ζ(t) : T→ Rm×d, |ζ(t)ζT(t)| 6= 0,
V (t) is d-dimensional Wiener process
(W (t), V (t) and X0 are independent).
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Optimal estimation problem

The optimal estimation problem is to find an estimate X̂(θ)
given the observations Y t

0 = {Y (τ), τ ∈ [0, t]} such that
X̂(θ) = ψ(θ, Y t

0 ), where the function ψ(θ, · ) satisfies for all
θ ∈ T the following condition:

E
[(
X(θ)− X̂(θ)

)T(
X(θ)− X̂(θ)

)]
→ min

ψ(θ, · )
.

This implies that X̂(θ) = ψ(θ, Y t
0 ) = E

[
X(θ)|Y t

0

]
.

For θ = t we have the filtering problem, for θ < t and θ > t
we have the smoothing problem and the prediction problem,
respectively.
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Main results in the theory of diffusion processes
filtering

Stratonovich–Kushner equation for the conditional
probability density function (end of the 1950s).
Kalman–Bucy filter (beginning of the 1960s).
Duncan–Mortensen–Zakai equation for the
unnormalized conditional probability density function
(second half of the 1960s).
Kallianpur–Striebel formula for the probabilistic
representation of the conditional probability density
function (end of the 1960s).
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Approximation methods in the theory of diffusion
processes filtering

Linearization of the signal and observation equations
(Kalman-type filters).
Methods based on parametric or functional
approximation of the conditional probability density.
Conditionally optimal filtering (optimizing the filter
structure).
Statistical modeling method, or Monte Carlo
method (Particle filters).
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Duncan–Mortensen–Zakai equation

The equation for the unnormalized conditional probability density
function ϕ(t, x|Y t0 ):

∂ϕ(t, x|Y t0 )

∂t
= Lϕ(t, x|Y t0 ) + µ

(
t, x,

dY (t)

dt

)
ϕ(t, x|Y t0 )

with the initial condition ϕ(t0, x) = ϕ0(x), where

Lϕ(t, x|Y t0 ) = −
n∑
i=1

∂

∂xi

[
fi(t, x)ϕ(t, x|Y t0 )

]
+

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

[
gij(t, x)ϕ(t, x|Y t0 )

]
− λ(t, x)ϕ(t, x|Y t0 ) +

+

∫
Rn

λ(t, ξ)ψ(t, x− ξ)ϕ(t, ξ|Y t0 )dξ, g(t, x) = σ(t, x)σT(t, x),

µ(t, x, z) = cT(t, x)η−1(t) z − 1

2
cT(t, x)η−1(t)c(t, x).
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Statistical modeling method

To find the approximate solution of the filtering problem it is necessary
to simulate M sample paths Xi(t) of the random process X(t) and the
corresponding paths ωi(t) of the weight function ω(t) by a numerical
method for relations

dX(t) = f
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dW (t)

+

∫
Rq

v
(
t,X(t−), ξ

)
ν(dt× dξ), X(0) = X0, (1)

and

ω(t) = exp

{∫ t

0

µ

(
τ,X(τ),

dY (τ)

dτ

)
dτ

}
=

= exp

{∫ t

0

cT
(
τ,X(τ)

)
η−1(τ)dY (τ)

− 1

2

∫ t

0

cT
(
τ,X(τ)

)
η−1(τ)c

(
τ,X(τ)

)
dτ

}
(5)

taking into account points of the Poisson process P (t).
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Statistical modeling method

For example, using the Euler–Maruyama method for SDE
without a compound Poisson process we have

Xk+1 = Xk + hf(tk, Xk) +
√
hσ(tk, Xk)ζk, ζk ∼ N (0, Is×s),

ωk+1 = ωk exp

{
cT(tk, Xk)η

−1(tk)
(
Y (tk+1)− Y (tk)

)
−1

2
cT(tk, Xk)η

−1(tk)c(tk, Xk)h

}
, ω0 = 1,

where {tk} is a discretization of the time interval T with a
step size h > 0:

tk+1 = tk +h, k = 1, 2, . . . , N ; t0 = 0, tN = T, N =
T

h
.
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Optimal estimation

The exact solution of the optimal filtering problem is

X̂(θ) = E[X(θ) |Y t
0 ] =

E[ω(t)X(θ)]

Eω(t)
.

The approximate solution of the optimal estimation problem
is

X̂(tκ) ≈ X̂κ =

( M∑
i=1

ωik

)−1 M∑
i=1

ωikX
i
κ,

where the index k corresponds to the current time t = tk
and the index κ corresponds to the time θ = tκ for which
the state vector estimate is calculated. The higher order
moments can be also found as well as estimations of
the probability density function or distribution function
of the state vector.
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Maximum cross section method

Using the maximum cross section method:

Solution of the transfer equation.
Analysis of jump-diffusion systems.
Analysis of switching diffusion systems (systems with
random structure).
Estimation in jump-diffusion systems.
Estimation in switching diffusion systems (systems with
random structure).
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Maximum cross section method

If there exists λ∗ such that λ(t) 6 λ∗, then the random time
between neighboring points τj and τj+1 should be simulated
as follows

τ = θN , N = min

{
ϑ : αϑ 6

λ(τj + θϑ)

λ∗

}
, θϑ =

ϑ∑
i=1

ξi,

where ξ1, ξ2, . . . , ξϑ, . . . is a sequence of independent random
variables having the exponential distribution with the rate
parameter λ∗: ξi = − lnβi/λ

∗; α1, α2, . . . , αϑ, . . . ,
β1, β2, . . . , βϑ, . . . is a sequence of independent random
variables having the uniform distribution on the interval
(0, 1), and λ(t) = λ(t,X(t)).
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Modified maximum cross section method

The modified maximum cross section method is more
efficient due to fewer random number generator calls,
and for this modified method the number N is defined by

N = min

{
ϑ : 1− α >

ϑ∏
i=1

(
1− λ(τj + θi)

λ∗

)}
,

where α is a random variable having the uniform
distribution on the interval (0, 1).
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Numerical example

Signal and observation model includes two equations

dX(t) = µX(t)dt+ σdW (t)

+

∫
R

v
(
t,X(t−), ξ

)
ν(dt× dξ), X(0) = X0 = 1,

dY (t) = X3(t)dt+ ζdV (t), Y (0) = Y0 = 0,

where X,Y ∈ R, t ∈ T = [0, 1], W (t) and V (t) are
one-dimensional standard Wiener processes. The compound
Poisson process P c(t) is defined by the intensity
λ(t, x) = ε t (1 + cosx), i.e., λ∗ = 2 ε, and the standard
normal distribution for jumps; µ, σ, ε are parameters.
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Numerical example

Filtering algorithms are used with following parameters:
time discretization step h = 0.001 for the Euler–Maruyama
method, sample size M = 104, µ = 0.15, σ = 0.1,
ε = 1; 5; 10; 50; 100.

Algorithms for the Poisson point modeling:

1. Algorithm based on the simple Poisson point modeling
(points are modeled approximately so that they coincide
with some points of the discretization {tk}).

2. Algorithm based on the maximum cross section method.
3. Algorithm based on the modified maximum cross

section method.
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Numerical example

Random number generator calls:

Algorithm
ε

1 2 3
1 10000000 29864 28223
5 10000000 109848 88773
10 10000000 209526 158329
50 10000000 1011466 623500
100 10000000 2005794 1163052

Table illustrates random number generator calls to simulate
points of the Poisson process only (random number generator calls
to simulate the Wiener process increments and jumps are not
taken into account).
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Numerical example

Signal and observations (ε = 5):
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Numerical example

Signal, mean, filtering result, smoothing result
for θ ∈ [0, 0.25], prediction result for θ ∈ [0.75, 1]:
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