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PROBLEM DEFINITION 

 Let us consider the following system of differential-algebraic equations (DAE) 

( , , ) x f x y t , 0 0( ) x t x , 0   kt t t ,      (1) 

0 ( , , ) g x y t .          (2) 

Here x , y , f  and g  are sufficiently smooth real-valued vector-functions, t  is an independent 

variable. 

 Since system (1), (2) can be easily reduced to autonomous form by adding equation 1 t , for 

the sake of simplicity further we assume that (1), (2) does not depend on t  explicitly. 
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THE SIGNIFICANCE OF SOLVING DAE 

 Many control theory problems lead to the necessity of solving DAE systems [1-2]. For 

example, these problems arise in 

 trajectory prescribed path control; 

 chemical reaction management; 

 electrical network operation; 

 robotics; 

 other applications. 

[1] Takuma Uchiyama, Hidetsugu Terada and Hironori Mitsuya, Continuous path control of a 5-DOF parallel-

serial hybrid robot // Journal of Mechanical Science and Technology Vol. 24. ‒ 2010. ‒ pp. 47-50. 

[2] C. C. Pantelides, The consistent initialization of differential-algebraic systems // SIAM J. Sci. Statist. 

Comput., 9. ‒ 1988. ‒ pp. 213-231. 
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THE COMPLEXITY OF ARISING PROBLEMS 

 Usually on solving control theory problems it is necessary to apply those algorithms, which 

provide the satisfaction of algebraic constraints (2) as accurately as it is possible [3], [4]. For this 

purpose, usually iterative procedures are used in calculations. Below general non-iterative 

numerical methods which can be applied directly to DAE are given.  

 Note that the problems (optimization of chemical processes, electrical network operation, 

robotics, etc) mentioned before are often stiff. Thus even insignificant perturbations of the 

parameters of the problem to be solved may lead to great or even inadmissible changes of a solution. 

This increases requirements to integration algorithms. 

[3] McGrath M., Howard D., Baker R., The strengths and weaknesses of inverted pendulum models of human 

walking // Gait \& Posture 41, 2015, p. 389-394 

[4] Yao Cai, Qiang Zhan, Xi Xi, Path tracking control of a spherical mobile robot // Mechanism and Machine 

Theory 51, 2012, p. 58-73 
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 Below the term 'index' as applied to systems of DAE is used. It is defined as follows [5]. 

System (1), (2) is of 

a) index 1, if 
xg  is nonsingular. System (1), (2) has an unique solution in this case. 

 

b) index 2, if g  does not depend on y  and 

|| || x yg f c . 

Note that in the latter case the existence and the uniqueness of a solution are not guaranteed [6]. 

 

[5] Gear, C. W. Differential-Algebraic Equations Index Transformations // SIAM J. Sci. Stat. Comput, V. 9,  

No. 1. ‒ 1988. ‒ pp. 39-47. 

[6] Rheinboldt, W.C. Differential-Algebraic Systems as Differential Equations on Manifolds // Math. Comput. 

43. ‒ 1984. ‒ pp. 473-482. 
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ε-EMBEDDING METHOD 

 Applying the well-known ε-embedding method [7], it is possible to rewrite system (1), (2) in 

the following form: 

( , ) x f x y , 0 0( ) x t x , 0   kt t t , 

( , ) y g x y , 0 . 

OR 

( , ) x f x y , 0 0( ) x t x , 0   kt t t ,          (3) 

( , ) / y g x y  , 0 .          (4) 

[7] Hairer, E., Wanner, G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. 

‒ Springer-Verlag, Berlin. ‒ 1996. ‒  p. 614. 
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(M, K)-SCHEMES FOR EXPLICIT SYSTEMS 

 Consider the Cauchy problem for a stiff system: 

( ) x f x , 0 0( ) x t x , 0   kt t t .         (5) 

Let m  and k  be given integers, m k .  Define sets  

{1,2, ... , }mM m , 1 1{ | 1, ,2 , }      k i m i i kM m M m m m i k m m . 

Set 
kM  contains the stages at which new values of a function are calculated. We introduce sets 

{ | 1 , }    i m kJ j M j M j i , 1 i m , and \k m kM M M , which is the addition set of 
kM .  

 

Using the introduced notation, an (m, k)-scheme [8] applied to (5) is given on the following slide. 

[8] Novikov E.A., Shornikov Yu.V., Computer simulation of hybrid stiff systems. Novosibirsk: Publishing 

House of the Novosibirsk State Technical University. ‒ 2012. ‒ p. 451 (in Russian) 
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(M, K)-SCHEMES FOR EXPLICIT SYSTEMS 
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(M, K)-SCHEMES FOR EXPLICIT SYSTEMS 

 Above 
i , 

ij , 
ij , 

ij ,   and a  are parameters defining accuracy and stability of scheme (6); 

h is the integration stepsize; A  is a matrix approximating derivative /  xf f x ; E  is the identity 

matrix; 
ib  are stages (increments) of the scheme. 

  

 Parameter 
 
equals either 0

 
or 1. On 0  it is more suitable to study accuracy of (6), 

whereas on 1
 
scheme (6) is more efficient due to less matrix-vector multiplications. 

 

 Applying the well-known ε-embedding method (m, k)-schemes can be used for solving the 

systems of DAE as well. 

 If the system to be solved is of index 2, then an (m, k)-scheme has the form given on the 

following slide. 
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(M, K)-SCHEMES FOR DAE 
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Here parameter 1i  for  ki M  and 0i  for  ki M . 
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(3, 2)-SCHEME FOR DAE 
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Matrix nD  is evaluated by the second formula in (8). 
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SECOND ORDER CONDITIONS 

      Parameters of an L-stable (3, 2)-method providing the second order were derived by comparing 

expansions of exact and approximate solutions in Taylor series. These expansions were obtained for 

DAE of index 2 using methodology based on the graphical representation of elementary differentials 

[9] and are not given here due to their cumbersomeness. Below the order conditions are given. 

1. 1 2 1   , 

2. 2 21 21 3 31 31 3( ) ( ) 0.5     a       , 

3. 2 2

2 3 21( ) a a   ,                 (10) 

4. 2 3

2 3 21( 2 ) 2 a a   , 

5. 3 2

3 21 21( ) 2 0.5     a a a   , 

[9] Roche, M. Rosenbrock methods for differential algebraic equations // Numer. Math., 1988,  V.52, pp. 45-63.  
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PARAMETERS 

 To get the parameters of the scheme it is enough to resolve system (10). They are of the form 

1.  2 2 2

1 21 21( 2 2 ) /  a a   , 

2.  2 2

2 21(2 2 ) /  a a  , 

3.  3 2 2

3 21( 2 ) /  a a  ,                (11) 

4.  2 2 2

21 21 21( 2 4 1) / (4 2 )     a a a a   , 

5.  3 2 2 4 3 2

31 21(4 8 6 1) / (8 8 2 ) 1      a a a a a a  . 

 Formulas connecting the parameters of scheme (9) on 0
 
and 1

 
are of the form 

21 21 / a  , 31 31 21 /  a   , 

1 1 21 2 21 31 3/ ( ) /   p a a      , 2 2 3 / p a  , 3 3p  . 

Let 1  and
 
 free parameters a  and 21  be equal to 1. Then, the method takes the following form... 
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(3, 2)-METHOD 
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CHEMICAL AKZO NOBEL PROBLEM 

The first test problem is given by the stiff system of 6 nonlinear DAE of index 1 [10]: 

( , ),

0 ( , ),

 




x f x y

g x y
        

(13) 

0(0) x x , 0, 1(0) y y , 0 180 t . 

Functions f

 

and g  equal, respectively, 

1 2 3 4

1 4 5

1 2 3

2 3 4

2 3 5

2

0.5 0.5

2

    
 
     
 
   
 

   
   

in

r r r r

r r r F

f r r r

r r r

r r r

     and     1 4 1   
s

g K x x y . 

[10] F. Mazzia, F. Iavernaro. Test Set for Initial Value Problem Solvers //  University of  Bari: Department of 

Mathematics, 2003. 295 p. 
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CHEMICAL AKZO NOBEL PROBLEM 

 The auxiliary variables equal 

4

1 1 2

2 3 4

2 1 5

2

3 1 4

2

4 1 2

/

  
 

  
  
 

  
 

  

k x x

k x x

k x x Kr

k x x

k y x

     and     2
2

( ) 
   

 
in

p CO
F klA x

H
.     (14) 

Calculations were performed with the following parameters:  

1 18.7k , 2 0.58k , 3 0.09k , 4 0.42k , 34.4K , 3.3klA , 

115.83
s

K , 2( ) 0.9p CO , 737H . 

Initial values were: 0 (0.444,0.00123,0,0.007,0) T
x , 0,1 0,1 0, 4  sy K x x , 0 0 0( , ) x f x y  and

0, 1 0 0, 1( , ) y g x y . 
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CHEMICAL AKZO NOBEL PROBLEM 

 

Fig. 1 2 ( )x t  time-dependence over interval [0, 3] 

 

Fig. 2 2 ( )x t  time-dependence over interval [0, 180] 

 



18 / 23 

CHEMICAL AKZO NOBEL PROBLEM 

h  Err  Scd  

10-2 1.6598⸳10-5 4.7800 

10-3 1.8038⸳10-7 6.7438 

10-4 1.8231⸳10-9 8.7392 

Table 1 Numerical results for the Chemical Akzo Nobel Problem 

 h is the integration stepsize, 

 Err  is the average absolute error, 

 Scd

 
is the average number of significant digits, which was computed by formula 

10log | relative error | Scd .       (15) 
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PENDULUM PROBLEM 

The second test problem is given by the following system of 5 nonlinear DAE of index 2 [11]: 

1 3

2 4

3 1 1

4 2 1

3 1 4 2

,

,

,

,

0 ,

 
  


  
    


 

x x

x x

mx x y

mx x y mg

x x x x
             

(16) 

where 

1(0) x l , (0) 0ix , 2 4 i , 1(0) 0y , 0  t  . 

Parameters of the Pendulum problem are 

98 0.4536 m , 3.92515344l , 9.80665g . 

[11] Hairer E., Wanner G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic 

Problems. Berlin: Springer-Verlag, 1996. 
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PENDULUM PROBLEM 

h  Err  Scd  

π⸳10-2 4.4626⸳10-1 0.3504 

π⸳10-3 4.8694⸳10-3 2.3125 

π⸳10-4 4.7526⸳10-5 4.3231 

Table 2 Numerical results for the Pendulum Problem 

 h is the integration stepsize, 

 Err is the average absolute error, 

 Scd  is the average number of significant digits. 
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NUMERICAL RESULTS 

 From the numerical results given in the tables it follows that the proposed method has the 

second accuracy order. As for the first problem, on increasing the integration stepsize by an order 

the relative accuracy of the approximate solution increases by two orders.  

 

 It is impossible to increase the integration stepsize of the method by an order one more time, 

since, as it can be seen from Fig. 1, width of the solution transition region is substantially less than 

0.5. 

  

 For the second problem it is impossible to make the integration stepsize greater saving the 

qualitative solution behaviour. The high relative error on 
210 h   is possible due to the great 

integration stepsize chosen. 
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CONCLUSION 

 A numerical non-iterative one-step method is derived. It is aimed at solving the wide class of 

the control theory problems, which behaviour is given by system (1), (2). The new method is  

L-stable and has the second accuracy order.  

 
 It is aimed at solving initial value problems for the DAE systems of index not exceeding two. 

 
 Numerical results with the constant integration stepsize show that the formulation of the 

variable stepsize algorithm will allow to create an efficient solver. 

 
 In the prospect it is necessary to add the option of "freezing" matrices of derivatives and derive 

methods of higher accuracy orders. 
 
 This will increase the efficiency of the methods and expand the possibilities of (m, k)-

methods for simulating control theory problems (which are often given by initial value and 

boundary value problems) with high precision. 
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