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SUMMARY

In consideration:

e On asymptotically optimal approach to solvability hard
discrete optimization problems

e Statenent of the Given-Diameter MST problem.

e An approximation algorithm A for solving the problem.
e A probabilistic analysis of Algorithm

e Sufficient conditions of asymptotic solvability the
Given-Diameter MST problem.




Bsenenue

Ocu. daxTopom, Olpe-M peajn3yeMoCThb aJrOPUTMOB, SBJI.
Pa3MepHOCTh (JIMHA 3aIUCH BXOJA) 331291, KOTOpasi B
50-70 1.1. TPOTIIIOTO BEKa aCCOMMUPOBAJIACH C TIOHATHEM
“mpoksisitust pasmeproctr” (curse of dimensionality) —
9KCIOHEHIINAIbHBIM POCTOM BDEMEHU DelleHus 3a/1a9u MpU
YBeJIMYeHUH JITTMHBI 3AIUCH BXOIHBIX JaHHbIX (Pudap
Bemnvan, 1961 1.). B mporuBoBec 9T0My B paMKax
ACUMIITOTHYECKH TOYHOTO (asymptotically optimal)
IIOJXO0Ja Pa3sMEPHOCTDb 3a/da4U ABJIAdE€TCAd HalluM JPYyI'OM U
COIO3HUKOM.

K H/Bp. onpeaesnnioch HEMAJIO YCIMENTHbIX TPUMepPOB
peaim3alliy MOIX0/a K PEIIeHUI0 TaKuX 3a/1a4 JUCKPETHON
OTITUMU3AINN, KaK 3a/1a91 MapIIpyTH3AINN,
MHOTOMHJEKCHbBIE 33Ja9l O Ha3HAYEHUAX, 3a/1a90
KJIaCTepHU3alny, 3a/Ja9l pa3MelleHns, TOKPBITHS,
KCTPeMaJibHble 3a1a9l Ha rpadax u ceTdX U T.II.



Bsenenue

TpyanopenaeMocTh 3THX 3a/a4 00yCIaBIABAET
AKTyaJLHOCTD pa3padoTKu 3(PpPHEKTUBHBIX aJITOPUTMOB
NPUOINZKEHHOTO PEIIeHUs C rapaHTHPOBAHHBIMU OIIEHKAMHU
TaKUX TIOKa3aTejeil KauecTBa uX paboOThl KaK —

BpPEMEHHas CJIOKHOCTD,
TOYHOCTD,

HaJIEXKHOCTH CcpadaThIBaHUsI

Kaura: Tumaan 9.X., Xauaii M.FO. «9xcrpemanbhbie 3aa4n
HA MHOXKECTBaxX MepecTaHoBoK» / — Exarepunbypr: “U3m-Bo
Vuaebuo-meroquueckuii mentp YIIN” 2016. — 210 c.



Performance guarantees and asymptotical optimality

ea(n) — ormenka OTHOC. TTOrPENTHOCTH AJTOpUTMa A
Ha JIeTEPM. BXOJAX OILPEJEIAeTCsS] HEPABEHCTBOM:
Wi (I) — OPT(I
Wah) - OPTQ)| __
OPT(I)

da(n) — BeposiTHOCTD HecpabaThiBaHWs aaropuT™a A

Ha CJY4. BXOJaX OIIpedesideTCd BePpOATHOCTHBIM HEP-OM:

[Wa () — OPT(I)]
]P){ OPT(I) > €A(H)} < 5A(H).

AcuMnToTHyecKas TOYHOCTD AJITOPpUTMa

[Tpubs. aaroput™ A aCHMIIT. TOYEH, €CJIH MPHA N — OO

ea(n) =0, da(n) — 0.




FO.U. 2XypasyieB: modTn Beerja...

Puc.: Ha xoudepenmuu no pacrnosuaBanuio odpa3os. Byasa 2013



[IepBblii mpuMep aCUMIT. TOTHOTO TOIXO/IA:

C'umag—TTepenennna (1969)
Anroputv  UBI'  tpyn-ti
O(n?) ana 3K co cayq. muc-
KPETHON .p. 9JI-B MATPUIIbI
(cij) paccrosgHmMit

p(k) =P{c;j =k}, 1 <k <K,,

ACHUMIIT. TOYEH IIpN

Kn

1
é p(1) + ...+ p(k) = o(n). Buranuit AdanacreBua
- Tlepenenuiia

B ciyuae pasnom. pacnp. UBI' acumnr. ToueH,

ecu pa3bpoc JI-B MATPUIIHl OTPAHUYEH BEJIUIMHON o(n / log n)




Teopewma Ilerposa vs nep-Ba YeOnimesa

[TepBoie pes-Thl 10 0OOCHOBAHUIO ACHMIITOTHIECKOI
TOYHOCTH OBLIM IOJIYYEHBI C HCHOJIb30BAaHHEM Hep-Ba,
Yeooimena. [Toz:xe 6osiee 1polyKTUBHON OKa3aJjiach

Teopema Ilerposa:

IIycts X4, ..., X, — H.CJI.B. U CYII-T. MOJOK. KOHCTAHTHI T
u hy,... h, Takue, aTo

EetXi < ezt (=T,n, 0<t<T).

O6oznaamm: H = ) h;. Toraa

i=1

. . exp{—x?/2H} upu 0 < x < HT,
P{ Z;XJ - X} - { exp{—Tx/2} upu x > HT,
i




[IprMeps! TpyTHOPEITaeMbIX 3a1a9 C peaJTn3aluaMu

ACUMIITOTHYIECKHX TOYHOI'O IIOAXO/a K NX PEIICHUIO

e TSP 1 m-PSP (0a10ro u HeCKOTbKHX KOMMUBOSIZKEPOB).
e Muorounjekcnas akcuaabHas 3ajla4a O Ha3HAYCHUAX.

e TpexunjiekcHas maHapHas m-cJaoifHadg 3a1a49a O
HA3HAYCHUSIX.

e 3a/1a1ua OTBICKAHKS [TOKPBITUSI ITOJTHOTO B3Belll. rpada
3a/IAHHBIM 9HCJIOM HECMEZKHBIX IHKJIOB.

e 3a/1a9 YIIAKOBKH B KOHTEHHEDHI U B MOJIOCY

e 3aada OTHICKAHHUS CBA3HOIO OCTOBHOTO moarpada ¢
MaKCHM. BeCOM pedep B TOJTHOM HEeOPHUeHTHPOBaHHOM Tpade
C 33JJAHHBIMU CTEIIEHAMH BEPIIUH.

e 3ajauu MapUIpyTH3ANUA TpaHCTOPTHBIX cpeacts (VRP)
e 3aj1ava OTHICKAHHS B rpade MEHUMAILHOIO OCTOBHOI'O
JiepeBa ¢ OTPAHUYEHHBIM CHU3Y (WU CBEPXY) JUAMETPOM.



Munumasbroe octoBroe Jepeso (MST)

The Minimum Spanning Tree Problem (MSTP)

is a one of the classic discrete optimization problems. Given
weighted graph G = (V,E), MSTP is to find a spanning
tree of a minimal total weight.

The polynomial solvability of MSTP:

was shown in the classic algorithms by Boruvka (1926),
Kruskal (1956) and Prim (1957).

These algorithms have complexity O(n?) and O(M logn),
where M = |E| and n = |V|.




Random MST

Expectation

Expectation of a weight MST on a random graph
can be unexpectedly small.

For example, on a complete graph with weights of
edges from class UNI(0; 1), the weight of a MST
w.h.p. (with high probability) is close to the
constant 2,02... [Frieze:1985].

Similar results [Angel at al: 2011, Cooper and
Frieze: 2016].




Diameter-Bounded generalization of MST

The diameter of a tree is the maximum number of edges within
the tree connecting a pair of vertices.

Diameter-Bounded MST

Given a graph G and a number d = dy, the goal is to find in the
graph G a spanning tree T}, of minimal total weight having its
diameter bounded

1) either above to given number d (d-BAMST), or

2) bounded from below to given number d (d-BBMST)

| A

In the case 1

the problem is NP-hard for any diameter between 4 and n — 1,
even for the edge weights equal to 1 or 2 [GJ].

In the case 2

the problem is NP-hard, because its particular case for
d =n — 1 is the problem HAMILTONIAN PATH [GJ]].




Given-Diameter MST

In current report another modification of MST problem is
studied.

d-MST

We consider a given-diameter minimum spanning tree
problem (d-MST) on the complete graph G,. We introduce
a polynomial-time algorithm to solve this problem and
provide conditions for this algorithm to be asymptotically
optimal.

A probabilistic analysis

is performed under conditions that edges weights of given
graph are UNI(ay; by )-entries (i.e. identically independent
distributed random variables).

First, we describe the algorithm A’ in the case of a directed
graph, and then the algorithm A in the case of an
undirected graph.



Algorithm A’ for finding d-MST on directed graphs

From arbitrary vertex vo € V build a path

P(d) = (vo,v1,.--,vd),

where vy ¢ P(k) is closest to the v, 0 <k < d.
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Algorithm A’ for finding d-MST on directed graphs

From arbitrary vertex vo € V build a path
P(d) = (vo,v1,.--,vd),

where vy ¢ P(k) is closest to the v, 0 <k < d.
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Algorithm A’ for finding d-MST on directed graphs

Let P =P(d), V' =V \P.
Every vertex v/ € V' is connected by the shortest possible edge
with a vertex v(v') € P\ {vo,vq}.

By E’ we denote the set of edges (v/,v(v')), v/ € V'.




Algorithm A" on directed graphs

Approximate solution T 4/

As a result we obtainan approximate solution of the problem:
the spanning tree T 4o with a diameter which equal to d = d,
since when connecting any vertex from V' to path P\ {vo, vq}
during the Stage 2, the diameter does not change.

The weight of T 4

The weight of the resulting spanning tree T 4 is equal to

Wy = W(P) + W(E/)

d

where ZC Vk—1,Vk),
k=1

WE) =D c.

ecE/




Algorithm analysis

Time complexity

O(n2)

Since Stage 1 is performed in time O((n — d)?).
On Stage 2 it takes about d(n — d) comparison operations.

Probabilistic analysis

It is assumed that weights of graph edges are i.r.v. n from the
class UNI(ay, by ), namely, uniformly distributed on a set

(an,bn), 0 < a, <b, < co.

Two ranges of parameter d

We perform analysis for two cases of values of the parameter d:

Case 1: Inn <d <nf and Case 2: nf <d <n,

1
where 0 = — —1=0,63.
e
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Algorithm analysis

min over k variables

Put r.i.v. nx = min over k variables from the class UNI(ay,, by);
& = min over k variables from the class UNI(0,1).

Weight of T 4

According to A’, the weight of T 4 equal to

n—1
Wa=WEP) +WE)= > m+ Y 1=
k=n—d v'ev’
n—1
= Z k+(m—d—1)ng—1 = (n—1a, + (by — an)W;l/,
k=n—d n—1
where Wi= > &+m—d-1) .

k=n—d




Algorithm analysis

In the case 1 (d < nf) the following inequality holds:

/ v m =
EWA/SEWA’: d

In the case 2 (nf < d < n) the following estimate is correct:
—
EW;‘/ S EW_A/ = Inn.




Algorithm analysis

Lemma

The Algorithm A’ for solving the d-MST on entries
UNI(ay; by) has the following estimates of the
relative error

(bn - 8“n)

en = (14 )\n)m,

and the failure probability

6n = AHE\\JNTA/ 3

where A\, > 0.




Algorithm analysis

Main Theorem.

Let the diameter d = d,, be defined so that
Inn < d < nf (Case 1) and nf <d < n (Case 2).

Then Algorithm A’ solves the problem d-MST on
entries UNI(ay; b,) with estimates

o

d,in Case 1,
n/Inn, in Case 2.

where

o) = {

So Algorithm A" asymptotically optimal, if
by { o(d), in Case 1,

A2 in (Cace 9

[aY



Algorithm A for finding d-UMST (in the case of

undirected graphs)

Choose an arbitrary vertex vg and divide all other vertices into
two sets B and W:
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Algorithm A for finding d-UMST (in the case of

undirected graphs)

Choose an arbitrary vertex vg and divide all other vertices into
two sets B and W:

Black White

1Bl -|wW]l=1 [B[+IW] =n-1



Algorithm A for finding d-UMST (in the case of

undirected graphs)

In each set starting at vo find a path of a certain length using
the approach ”go to the nearest unvisited vertex”.

Black White

1Bl - 1wl =1 IB|+|W]| =n-1
IdB-deSl de+dw=d



Algorithm A for finding d-UMST (in the case of

undirected graphs)

Connect the white remaining vertices to the nearest inner black
vertices of the path, and the black remaining vertices to the
nearest inner white vertices of the path.

Black White

[1B] - IW][] =1 [BI+]W] =n-1



Algorithm A for finding d-UMST (in the case of

undirected graphs)

Connect the white remaining vertices to the nearest inner black
vertices of the path, and the black remaining vertices to the
nearest inner white vertices of the path.

Black White

1Bl - W] <1 IB|+|W]| =n-1



Algorithm A for finding d-UMST (in the case of
undirected graphs)

Connect the white remaining vertices to the nearest inner black
vertices of the path, and the black remaining vertices to the

Vo



Conclusion

It would be interesting to investigate

(a) the Random d-UMST problem on input data
with infinite support like exponential or
trunketed-normal distribution;

(b) the problem of finding several edge-disjoined
spanning trees with a diameter which is given or
bounded.

(c) Conduct a probabilistic analysis of the
Algorithm A" on an undirected graph with the
correct account of the dependence of of random
objects that occur along the algorithm.
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