Novosibirsk State Technical University

15th International Asian School-Seminar Optimization Problems of Complex Systems 26-30 August 2019

Finding Optimal Solutions on Models of Living Systems

Yury V. Shornikov Evgeny A. Popov

Novosibirsk, Russia, 2019

Human Biliary System

Representation as a two tank system

Hybrid Systems

Explicit DAEs with constraints

y' = f(x, y, t), $x = \varphi(x, y, t),$ pr:g(x, y, t) < 0, $t \in [t_0, t_k], x(t_0) = x_0, y(t_0) = y_0,$ where $x \in R^{N_x}$, $v \in R^{N_y}$, $t \in R$, $f: \mathbb{R}^{N_x} \times \mathbb{R}^{N_y} \times \mathbb{R} \to \mathbb{R}^{N_y},$ $\varphi: R^{N_x} \times R^{N_y} \times R \to R^{N_x}.$ $g: R^{N_x} \times R^{N_y} \times R \to R^S.$

Mathematical Model

$$\begin{cases} x_1' = r \cdot g(t) - F_1(x_1), \\ x_2' = (1 - r) \cdot g(t), \end{cases} \qquad \begin{cases} x_1' = g(t) - F_1(x_1) + F_2(x_2), \\ x_2' = -F_2(x_2). \end{cases}$$

where $r \in (0,1)$ is the separation ratio of the synthesized bile flow;

$$F_{1}(x_{1}) = \begin{cases} k_{1} \cdot x_{1}, x_{1} < x_{1}^{*}, \\ F_{1}^{*}, x_{1} \ge x_{1}^{*}, \end{cases}$$

is the flow through the sphincter of Oddi;

$$F_{2}(x_{2}) = \begin{cases} k_{2} \cdot x_{2}, x_{2} < x_{2}^{*}, \\ F_{2}^{*}, x_{2} \ge x_{2}^{*}. \end{cases}$$

is the flow through the sphincter of Lutkens.

Computer Model

Novosibirsk, Russia, 2019

Daily Bile Level in the Gallbladder

Parametrization

In the Filling mode for $t \in [0, \tau_1]$: $g(t) = G_{min}, \text{ so}$ $\begin{cases} x_1' = G_{min} - k_1 \cdot x_1 + k_2 \cdot x_2, \\ x_2' = -k_2 \cdot x_2. \end{cases}$ $G_{min} \rightarrow max$ $max(x_1(t)) \le x_1^*,$ $k_1 = 5, k_2 = 0.7, x_1(t_0) = 0.5, x_2(t_0) = 10.$

Computer Model

```
// Parameters
 1
 2 const K1 = 5;
 3 const K2 = 0.7;
 4
 5
   // Varied parameter
   const G1 = 5.0;
 6
 7 const G2 = 4.0;
 8 const G3 = 3.0;
 9 const G4 = 2.735;
10 const G5 = 1.0;
11
12 // Varied biliary system
    for i = 1:5
13
    ł
14
      x1[i]' = G[i] - K1 * x1[i] + K2 * x2[i];
15
16 x1[i](t0) = 0.5;
17 x_{2[i]} = -K_{2} * x_{2[i]};
     x_2[i](t0) = 10.0;
18
19
    }
```

Simulation Results

Comparison with the Closed-Form Solution

The partial solution is

$$x_{1}(t) = \left(x_{1}^{0} - \frac{G_{min}}{k_{1}} - \frac{k_{2}x_{2}^{0}}{k_{1} - k_{2}}\right)e^{-k_{1}t} + \frac{k_{2}x_{2}^{0}}{k_{1} - k_{2}}e^{-k_{2}t} + \frac{G_{min}}{k_{1}},$$

$$x_{2}(t) = x_{2}^{0}e^{-k_{2}t}.$$

$$t^{*} = \frac{\ln\left(\frac{A_{2}k_{2}}{A_{1}k_{1}}\right)}{k_{2}-k_{1}} \approx 0.464 h,$$

where $A_{1} = x_{1}^{0} - \frac{G_{min}}{k_{1}} - \frac{k_{2}x_{2}^{0}}{k_{1}-k_{2}}, A_{2} = \frac{k_{2}x_{2}^{0}}{k_{1}-k_{2}}.$

 $t^{* \text{(simulation)}} \approx 0.463 h.$

ISMA

Modeling languages:

- Textual general-purpose language LISMA;
- Block-textual diagrams;
- Harel statecharts;
- Domain-specific languages.

/	h1′ h2′	=	(1 (1	 	S) S)	* *	(Qp (Q2	- +	Q1 V3	- *	Q2 Q3	-	V3 V4	*	Q3); Q4);
	sta } f	te V3 ron	sti 3 = n ir	L (0; nit	[h1 , ^s	<= st2	= hv3 2;	3)	{						
	sta } f	te V3 rom	st2 3 = n ir	2 (1; nit	(h1 ,	> st1	hv3) L;) +	[

ISMA's Library of Numerical Methods

Method (p, m)*	Description
DISPF (5, 6)	Stability control. For ODEs of moderate and low stiffness
RADAU5 (3, 3)	Stiff ODEs
DISPF1_RADAU5	The adaptive method DISPF combined with RADAU5 with stiffness control. For very stiff ODEs
DP78ST (8, 13)	Stability control, variable order and stepsize, high accuracy. For ODEs of moderate stiffness. Based on the Dormand-Prince method
RKF78ST (7, 13)	The same. Based on the Runge-Kutta-Fehlberg method
RK2ST (2, 2) RK3ST (2, 3)	Explicit methods with stability control for simulating nonstiff ODEs
DISPS1	Algorithm of variable order with adaptive stability regions
MK22 (2, 2) MK21 (2, 2)	Frozen Jacobian matrix. For stiff ODEs.

* *p* denotes the order and *m* stands for the number of stages of a method.

Novosibirsk State Technical University

15th International Asian School-Seminar Optimization Problems of Complex Systems 26-30 August 2019

Finding Optimal Solutions on Models of Living Systems

Yury V. Shornikov Evgeny A. Popov

Novosibirsk, Russia, 2019