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Numerical Probabilistic Analysis (NPA)

NPA is the section of Computing Mathematics.
Subject of NPA is a decision of the problems with stochastic uncertainty in data.
Methods of NPA use numerical operations under probability density functions of
random variables and their functions.
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Numerical Operations
{+,−, ·, /, ↑,max,min}
Binary relations
{≤,≥}

Types of Uncertainty
• Aleatory
• Epistemic

NPA

PDF
• discrete
• histogram
• piecewise-polynomial
Probabilistic Extension
• Natural
• Histogram
Second-Order Histogram

Solution
• SLAE
• Nonlinear Equations

Practical Applications
• Decision Making
• Risk assessment
• NPV, IRR
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Types to uncertainties

L.P. Swiler, A.A. Giunta. Sandia Technical Report (2007).

“Where it is practical, calculation input characterizations should separate aleatory
and epistemic uncertainties.”
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Aleatory & Epistemic uncertainties

Aleatory uncertainties are characterized by frequency distributions.
Alternative terminologies include: variability, stochastic uncertainty, irreducible
uncertainty, and Type A uncertainty.

Epistemic uncertainties are characterized degrees of “belief” and should not be
given a frequency interpretation.
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Numerical Probabilistic Analysis

The basis of NPA is numerical operations on probability density functions of the
random values.
Arithmetic on probability density function uses operations as
∗ ∈ {+,−, ·, /, ↑,max,min}, and binary relations as {≤,≥}.
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Histogram arithmetic

Numerical operations of histogram arithmetic is one of NPA components.
The first idea histogram arithmetic was published in the article

V.A. Gerasimov, B.S. Dobronets, and M.Yu. Shustrov

Numerical operations of histogram arithmetic and their applications. Automation
and Remote Control, (Feb 1991), 52(2), pp. 208–212.
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Histogram arithmetic

Base idea of the histogram approach is concluded in following:
probability density function of random value can be written in the histogram form
(piecewise constant function). For example one — dimensional random value
histogram function is defined by mesh {xi |i = 0, ..., n} and means constant Pi on
each segment [xi , xi+1], h = maxn−1

i=0 {xi+1 − xi}.
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Probabilistic extensions

Definition 1.

Let (x1, ..., xn) be a system of continuous random variables with joint probability
density function p(x1, ..., xn) and random variable z is the function f (x1, ..., xn)

z = f (x1, ..., xn).

By probabilistic extension of the function f we mean an probability density
function of the random variable z.
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Histogram probabilistic extensions

Suppose the histogram F is defined mesh {zi |i = 0, ..., n}.
The region is denoted as Ωi = {(x1, ..., xn)|zi < f (x1, ..., xn) < zi+1}.
Then the histogram value Fi on the interval [zi , zi+1] is defined as

Fi =

∫
Ωi

p(x1, x2, . . . , xn)dx1dx2 . . . dxn/(zi+1 − zi ). (1)

Definition 2.

By histogram probabilistic extension of the function f we mean an histogram F
constructed from (1).
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Natural histogram extensions

Let f (x1, ..., xn) be rational function.
To construct of histogram of F replaced by the arithmetic operation on the
histogram operation, and variables x1, x2,..., xn replaced by histogram of values.

Definition 3.

The resulting histogram of F is called a natural histogram extension.
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Histogram probabilistic extensions and arithmetic operations

Let P be a histogram of the probability density function z = x ∗ y , and
∗ ∈ {+,−, ·, /, ↑}. Then the value of Pi on the interval [zi , zi+1] is defined by
formula

Pi =

∫
Ωi

p(x , y)dxdy/(zi+1 − zi ), (2)

where Ωi = {(x , y)|zi ≤ x ∗ y ≤ zi+1}.
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The histogram of the sum for two random variables

z = x + y ,

then Pz is a histogram of the probability density function of z and

pzi = (

∫
Ωi

p(x , y)dxdy/(zi+1 − zi ). (3)

Support of p(x , y) is a rectangle [a1, a2]× [b1, b2] and
Ωi = {(x , y)|zi ≤ x + y ≤ zi+1}.
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Theorem 1.

Let x1, . . . , xn be independent random variables.
If f (x1, . . . , xn) is a rational expression where each variable xi occurs not more than
once, then the natural histogram extension approximates a probabilistic extension
to O(hα), α ≥ 1.
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Example 1.

f (x , y) = xy + x + y + 1

= (x + 1)(y + 1).
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Example 1.

f (x , y) = xy + x + y + 1 = (x + 1)(y + 1).
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Theorem 2.

Let the function f (x1, ..., xn) can be a change of variables, so that f (z1, . . . , zk ) is a
rational function of the variables z1, . . . , zk satisfying the conditions of Theorem 1.
The variable zi is a function of xi , i ∈ Indi . and Indi be mutually disjoint. Suppose
for each zi is possible to construct a probabilistic extension.
Then the natural extension f (z1, . . . , zk ) would be approximated by a probabilistic
extension f (x1, ..., xn).
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Example 2.

Let f (x1, x2) = (−x2
1 + x1)sin(x2).

Then z1 = (−x2
1 + x1) and z2 = sin(x2).

We shell notice that possible to construct a probabilistic extension for functions
z1, z2 and f = z1 ∗ z2 be a rational function satisfying the conditions of Theorem 1.
So natural extension will approximate probabilistic extension to function f (x1, x2).
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General case

Consider case when necessary to find probabilistic extension for function
f (x1, x2..., xn) but conditions of Theorem 2 are not fulfilled.
Suppose for definiteness that only x1 occurs a few times.
If instead of random variable x1 to substitute determinate value t then possible
construct natural probabilistic extension to function f (t , x2..., xn) .
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Suppose t is an discrete random value approximating x1 the following
let t takes values ti with probability Pi and each one function f (ti , x2..., xn) possible
to construct natural probabilistic extension.
Then a probabilistic extension f of the function f (x1, ..., xn) can be approximated
by a probability density ϕ as follows:

ϕ(ξ) =
n∑

i=1

Piϕi (ξ).
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Example 3.

Let f (x , y) = x2y + x and x , y are uniformly distributed on [0, 1] interval random
values.
We shell change x to discrete random value t , {ti |ti = (i − 0.5)/n, i = 1, 2, ..., n},
Pi = 1/n and shell calculate natural probabilistic extensions ϕi .

Table 1. Approximating error of the probabilistic extensions
n ||f − ϕ||2
10 1.2887825282E-03
20 4.5592973952E-04
40 1.6120775967E-04
80 5.6996092139E-05
160 2.0151185588E-05

Analysis of calculated results has shown that ϕ approximates f with α = 1.4998,
here α is approximation order.
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Construction to probabilistic density function for dependent variables
under aleatory uncertainty

y = f (x1, x2, ..., xm).

We shell consider the problem of construction to probabilistic density function
when repeated samples for vector (x1, x2, ..., xm) are known.
Suppose x1, x2, . . . , xm be dependent variables and repeated samples
X1 = (x1, x2, . . . , xm)1,
X2 = (x1, x2, . . . , xm)2, . . . ,
XN= (x1, x2, . . . , xm)N are known.
We shell constructed to histogram estimation Py of probabilistic density function
for random value y .
Let histogram Py is defined on mesh {zi , i = 0, 1, . . . , n}.
Then histogram takes value Pj on interval [zi−1, zi ] where

pj =
nj

N(zj − zj−1)
,

nj — number of points yi = f (Xi ), from interval [zi−1, zi ].
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Comparison of NPA and Monte Carlo Methods

Monte Carlo method displays convergence 1/
√

N. Monte Carlo Errors reduce by a
factor of 1/

√
N. Where N is the number of sampled points.

Error of histogram extension is O(1/nα), α ≈ 2.
In practice using the histogram extensions is more efficient than Monte Carlo
Methods more than 102 − 103 times.
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Example 4. Comparison of approximation errors

Necessary to find p the sum of four standard uniformly distributed random
variables.

p(x) =


1
6 x3, in 0 ≤ x ≤ 1;
− 1

2 x3 + 2x2 − 2x + 2
3 , in 1 ≤ x ≤ 2;

1
2 x3 − 4x2 + 10x − 22

3 , in 2 ≤ x ≤ 3.
− 1

6 x3 + 2x2 − 8x + 32
3 , in 3 ≤ x ≤ 4.

Let N be the number of sampled and n be dimension of mesh.
Hn is histogram probabilistic extension of p for n (exact histogram). Pn is natural
histogram extension of p for n, MCn,N is histogram approximation of Monte Carlo
method of p for n,N

Table 2. Errors of histogram arithmetic and Monte Carlo Methods
n N = 104 N = 105 N = 106 ||Hn − Pn||2.

10 0.0059 0.00168 0.00037 4.16e-3
20 0.0055 0.00198 0.00041 5.39e-4
50 0.0026 0.00103 0.00026 3.47e-5

100 0.0023 0.00062 0.00018 4.35e-6
150 0.0016 0.00055 0.00016 1.28e-6
200 0.0014 0.00044 0.00014 5.44e-7

This table represents the approximation errors ||Hn − Pn||2 and ||Hn −MCn,N ||2.
We can see that for a fixed n error of the Monte Carlo method decreases as
≈ 1/

√
N, order of convergence natural histogram extension is α ≈ 3.5.
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Second Order Histogram (SOH)

Definition 4.

Second-order histogram is piecewise histogram function.

SOH is determined by the mesh {zi |i = 1, 2, ..., n} and set of histogram
{Pi |i = 1, 2, ..., n}.
On each interval [zi , zi+1] SOH is a histogram Pi .
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Example 5. Second Order Histogram

Let Pt be triangular distributed on [0, 1] random variable with height h = 2 and
top (t , 2). Let t be triangular distributed on [0.25, 0.75] random variable with top
(0.5, 4).

The top and bottom lines corresponds to the interval histogram and the middle
line correspond to the mean SOH.
Values probability densities are shades of gray.
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Numerical operation under Second Order Histogram

Z = X ∗ Y , ∗ ∈ {+,−, ·, /, ↑},

X ,Y — Second Order Histograms determined on mesh {xi , i =0,1,. . . n},
{yi , i =0,1,. . . n} and set of histograms {Pxi} and {Pyi}.
Present Z as SOH Pz. Pz determined on mesh {zi |i = 0, 1, . . . , n} and set of
histograms {Pzi}.
Then Pzi on [zi−1, zi ] is determined by formula

Pzi =

∫
Ωi

X(ξ)Y (η)dξdη/(zi − zi−1), (4)

where Ωi = {(ξ, η)|zi ≤ ξ ∗ η ≤ zi+1}.
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Example 6. Addition of SOH

Suppose we want to add two second order histograms X and Y .
SOH X and Y are generated by uniform random variables defined respectively on
[0, t1] and [t2, 2], where t1 is uniform random variable defined on the interval [1,2],
t2 is uniform random variable defined on the interval [0,1].
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The sum of two second order histograms

+
=

The result of the addition of two SOH X and Y constructed in the form SOH Z .
Support of Z is the interval [0,4], the height of 1.
Values of probability densities are shades of gray.
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The nonlinear equations

f (x , k) = 0,

where k — vector of random parameters, x ∈ [a, b].
Let φz be probabilistic extensions of f (z, k) and z ∈ [a, b].
Then P(z) is a probability that the root x is to the left (right) point z:

P(z) =

∫ 0

−∞
φz (ξ)dξ.

Boris S. Dobronets & Olga A. Popova Numerical Probabilistic Analysis



Numerical Probabilistic Analysis Probabilistic extensions Monte Carlo Second Order Histogram Applications

The nonlinear equations

ax2 − b = 0, where a, b — random variable with uniform distribution on [1, 2],
[2, 4].

Histogram of the root of the square equation
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Solution of linear system equations

Ax = b.

Let b be random vector, and b1, b2 be independing uniformly distributed
components on [0, 1] interval.
Suppose that matrix A is

A =

(
a11 −1
−1 2

)
.

and component a11 is independent random value uniformly distributed on [2, 4]
interval.

Piecewise constant with step 0.1 approaching the joint density probability x . The
solid line shows the boundary the set of solutions of the original system.
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Solution of nonlinear system equations

ax2 + by2 − 4 = 0,

xy − c = 0,

where a,b, c — independent uniformly distributed components on [1, 1.1], [2, 2.1],
[0.505, 0.51].

Piecewise constant with step 0.1 approaching the joint density probability (x , y).
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Risk Assessment

Consider risk assessment of investment projects. We use a priori information about
the probability densities of sales and product price and calculate NPV and IRR.
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NPV & IRR

Net Present Value (NPV) and Internal Rate of Return (IRR)

NPV (r) = 0.8181818 · 0.68z1s1

3∑
i=1

ci xi

(1 + r)i
− 3400000, (5)

r — the discount rate,
ci — price,
xi — volume of sales,
s1 — cost,
z1 — expenditures.
IRR determines the maximum acceptable discount rate in which you can invest
without any loss to the owner: IRR = r , in which the

NPV (r) = 0. (6)

Using expert estimates were constructed histogram approximating the probability
density ci , xi , s1, z1. Presence of various expert assessments can build SOH.

Boris S. Dobronets & Olga A. Popova Numerical Probabilistic Analysis



Numerical Probabilistic Analysis Probabilistic extensions Monte Carlo Second Order Histogram Applications

NPV & IRR

NPV IRR

The figure shows the mean of the second order histograms of NPV and IRR.
Histogram analysis of NPV and IRR can see that as very likely negative outcomes,
and the possibility of considerable profit compared with the standard analysis.
Using estimates of density NPV and IRR in the form of histograms and second
order histograms, we can assess the risk that the investment project will be
loss-making. So if PNPV is histogram probability density NPV , then the probability
that the investment project will be loss-making can be calculated by the formula

Pu =

∫ 0

−∞
PNPV (ξ)dξ.
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NPV & IRR

• Probability density function for the variables ci , xi , s1, z1 histograms were
presented with n = 50.
• Comparison of NPV calculations and Monte Carlo simulation showed that when
the number of experiments N = 1000000 coincides with the results of the
Histogram calculation of up to three or four decimal places.
• Numerical experiments have shown that this histogram arithmetic more than
three hundred times faster.
• To calculate the IRR to solve nonlinear equations. In the case of a numerical
probability analysis, the computation of the histogram of the root of a nonlinear
equation is reduced to the computation of the integrals of the corresponding
histogram extensions.
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