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The IEEE 754-2008 standard

Aim

Ensure predictable and portable numerical software.

Basic Formats

single-precision (binary32)

double-precision (binary64)

quadruple-precision (binary128)

Rounding Modes

Rounding to nearest

Directed rounding (towards 0, −∞ and +∞)

Correctly rounded operations

+,−,×, /,√
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The IEEE 754-2008 standard

And for elementary mathematical functions ?
exp, log, sin, cos, tan, · · ·

⇒ IEEE-754-2008 only recommends correct rounding because of
the Table Maker’s Dilemma
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The Table Maker’s Dilemma

Correct rounding

◦p(f (x)ε) = ◦p(f (x)0)

Hard-to-round case

[f (x)ε − ε, f (x)ε + ε]

Midpoints

Floating-points
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The Table Maker’s Dilemma

The Table Maker’s Dilemma

Given a function f defined over I and a rounding mode ◦p, find ε
such that ∀x ∈ I

◦p(f (x)ε − ε) = ◦p(f (x)ε + ε).

f (x)
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The Table Maker’s Dilemma

General Framework

1 Split the domain and approximate the function on each
sub-domain with error ε.

2 Search hard-to-round cases.

3 Find the hardness-to-round ε of f among the HR-cases.

f (x)ε
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High Performance Computing

Problem

HR-cases search is very computationally intensive.
⇒ Several years of computation on CPU.

Time complexity is exponential in the number of bits of the
targeted format.

Good news

We focus on fixed size intances namely 64, 80 and 128-bit
formats.

We can search for HR-cases in each sub-domain
independently.
⇒ Embarrassingly parallel problem.
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High Performance Computing

Single Instruction Multiple Data (SIMD)

Data parallelism implemented in almost all hardware :

Intel X5650 CPU : 6 SIMD cores (SSE intructions : 4x32-bit
data)

NVIDIA C2070 GPU : 14 SIMD cores (32x32-bit data)

CUDA

Language designed for NVIDIA GPU.

Threads are grouped by warps and executed on SIMD Units.
⇒ The threads of a warp must execute the same instructions
at the same time.

If the treads of a warp do not follow the same execution path
(conditionals and loops), they diverge.
⇒ Their executions are serialized.
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HR-case search

Problem

Given |P(x)− f (x)| < ε with P ∈ R[x ]
Find x ∈ N, if it exists, such that :{

x < N
|P(x) cmod d | < ε

with (d , ε,N) ∈ N3.

P(x)
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HR-case search

Problem

Given |P(x)− f (x)| < ε with P ∈ R[x ]
Find x ∈ N, if it exists, such that :{

x < N
P(x) + ε mod d < 2ε

with (d , ε,N) ∈ N3.

P(x) + ε
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HR-case search

Problem

Given |P(x)− f (x)| < ε with P ∈ R[x ]
Find x ∈ N, if it exists, such that :{

x < N
b − a · x mod d < 2ε

with (d , ε,N) ∈ N3.

b − a · x
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HR-case search

Strategy

Place a · x modulo d .

Test if there are points at distance 2ε at the left of b.

0 d
b

a · 0 a · 1 a · 2 a · 3 a · 4 a · 5 a · 6a · 7

b − a · x
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Position of the a · x mod d on [0, d [

Three distance theorem [Slater 50]

The points {a · x mod d | x < N} split the segment [0, d [ into
n + 1 segments. Their lengths take at most three different values,
one being the sum of the two others.

Example : a = 17, d = 45

N = 0 0 45

0

45

N = 1 0 45

00 1

17 28
�

N = 2 0 45

00 1 2

17 17 11
�

N = 3 0 45

00 1 23

6 11 17 11

N = 4 0 45

00 1 23 4

6 11 6 11 11
�

� : 2-length configurations
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Position of the a · x mod d on [0, d [

Going from a 2-length configuration to the next

(h, l)→ (h − l , l), with l < h.
⇒ Similar to the Euclidean algorithm for computing continued

fraction.
⇒ In fact, this is the continued fraction of d/a.

[Slater 67].

Continued Fraction Expansion

d0

a0
= q0 +

d1

a1
= q0 +

1

q1 +
a2

d2

= · · ·

At each step alternatively,

d2i = q2i · a2i + d2i+1 ; a2i+1 = a2i

a2i+1 = q2i+1 · d2i+1 + a2i+2 ; d2i+2 = d2i+1
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Computing a lower bound on b − a · x mod d

Objective

Compute iteratively bi , the distance from b to the closest point
”to its left” at step i .

4 cases

1 b is in an interval of length ai and we reduce di ,

⇒ Nothing to do

2 b is in an interval of length di and we reduce ai ,

⇒ Nothing to do

3 b is in an interval of length di and we reduce di ,

4 b is in an interval of length ai and we reduce ai .
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Case 3 : reduction of di

a = 11 ; d = 45 ; b = 30

45

0
b

0 45

0

0
b

0 45

0 1

11 34
�

0
b

0 45

0 1 2

11 11 23
�

0
b

0 45

0 1 2 3

11 11 11 12
�

0
b

0 45

0 1 2 3 4

11 11 11 11 1
�

b reduction rule

bi+1 = bi mod ai+1
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Computing a lower bound on b − a · x mod d

4 cases

b is in an interval of length ai and we reduce di ,
⇒ Nothing to do

b is in an interval of length di and we reduce ai ,
⇒ Nothing to do

b is in an interval of length di and we reduce di ,
⇒ Reduction ”from the left” : bi+1 = bi mod ai+1

b is in an interval of length ai and we reduce ai .
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Case 4 : reduction of ai

a = 34 ; d = 45 ; b = 30

45

0
b

0 45

0

0
b

0 45

0 1

34 11
�

0
b

0 45

0 12

23 11 11
�

0
b

0 45

0 123

12 11 11 11
�

0
b

0 45

0 1234

1 11 11 11 11
�

b reduction rule

bi+1 = (bi − ai+1) mod di+1
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Computing a lower bound on b − a · x mod d

4 cases

b is in an interval of length ai and we reduce di ,
⇒ Nothing to do

b is in an interval of length di and we reduce ai ,
⇒ Nothing to do

b is in an interval of length di and we reduce di ,
⇒ Reduction ”from the left” : bi+1 = bi mod ai+1

b is in an interval of length ai and we reduce ai .
⇒ Reduction ”from the right” : bi+1 = (bi − ai+1) mod di+1
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Divergence in the two algorithms

Lefèvre algorithm

Update the distance from b to the closest point ”to its left” as
soon as we add a point to the left of b.
⇒ Condition the reduction of di and ai by the location of b.
⇒ From division-based to subtraction-based Euclidian algorithm
when splitting the interval containing b.

New algorithm

Update the distance from b to the closest point ”to its left” at
each step of the continued fraction expansion.
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Divergence in the two algorithms

Lefèvre algorithm

input : P(x) = ax + b, ε, N

initialisation :
x ← {a} ; y ← 1− {a} ; z ← {b} ;
u ← 1 ; v ← 1 ;

if z < ε then return Fail;
while True do

if z < x then
q ← bx/yc; /* b is in ai */

y ← y − q × x ; /* reduction of di */

u ← u + q × v ;
if u + v ≥ N then return Success;
x ← x − y ; v ← u + v ; /* reduction of ai by one di */

else
z ← z − x ; /* b changed from ai to di */

if z < ε then return Fail; /* update distance to b */

q ← by/xc; /* reduction of ai */

x ← x − q × y ;
v ← v + q × u;
if u + v ≥ N then return Success;
y ← y − x ; u ← u + v ; /* reduction of ai by one di */
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Divergence in the two algorithms

New algorithm

input : P(x) = ax + b, ε, N

initialisation :
x ← {a} ; y ← 1 ; z ← {b} ;
u ← 0 ; v ← 1 ;

if z < ε then return Fail;
while True do

if x < y then
q = y/x ; /* reduction of ai */

y = y − q ∗ x ;
u = u + q ∗ v ;
z = z mod x ; /* update distance to b */

else
q = x/y ; /* reduction of di */

x = x − q ∗ y ;
v = v + q ∗ u;
if z ≥ x then

z = z − x ; /* update distance to b */

z = z mod y ;

if u + v ≥ N then return z > ε;
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Divergence within the main loop

A deterministic test

ai and di are reduced alternatively
⇒ we can avoid divergence by unrolling 2 loop iterations.

New algorithm unrolled

input : P(x) = ax + b, ε, N

initialisation :
x ← {a} ; y ← 1 ; z ← {b} ;
u ← 0 ; v ← 1 ;

while True do
/* reduction of y */

q = y/x ;
y = y − q ∗ x ;
u = u + q ∗ v ;
z = z mod x ;
if u + v ≥ N then return z > ε;
/* reduction of x */

q = x/y ;
x = x − q ∗ y ;
v = v + q ∗ u;
if z ≥ x then

z = z − x ;
z = z mod y ;

if u + v ≥ N then return z > ε;
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Divergence on the main loop (exp, interval [1, 1 + 2−13])

Normalized mean deviation to the maximum (NMDM)

1− Mean({ni , 0 ≤ i < w})
Max({ni , 0 ≤ i < w})

Lefèvre Algorithm

New Algorithm

⇒ Lefèvre algorithm goes from division-based to subtraction-based
Euclidian algorithm when splitting interval containing b.
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Results

Times in seconds for HR-case search in [1; 2]
(253doubles, ε = 2−96)

CPU (X5650)
GPU(C2070) Speedup

No SIMD

Lefèvre algorithm 36816.10 2446.87 x15.0

New algorithm 34039.94 705.89 x48.2

Speedup x1.08 x3.5

Total speedup

Lefèvre on a CPU core → New algorithm on GPU : x52.2 .
Lefèvre on a hex-core CPU → New algorithm on GPU : x7.5 .
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Conclusion and perspectives

Conclusion

Implementation and algorithmic solutions to minimize :

loop divergence,
conditional divergence.

Substancial speedups thanks to a more regular control flow.

Perspectives

If the targeted function is not well approximated by a degree
one polynomial
⇒ Too many HR-cases !
⇒ Exhaustive search of hardness-to-round becomes huge !

Solution : using higher degree approximations
⇒ SLZ algorithm, based on the LLL algorithm.

Harness SIMD units on other hardware (SSE/AVX CPUs, Intel
MIC, ...) with OpenCL, ISPC...
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