
An Environment for Veri�ed Modeling and Simulation of
Solid Oxide Fuel Cells

Stefan Kiel, Ekaterina Auer and Andreas Rauh

SCAN 2012

1 / 26

Table of Contents

1 VerIPC-SOFC Project

2 UniVerMeC

3 Parameter Identi�cation

4 Conclusions and Outlook

2 / 26

VerIPC-SOFC Project

Modeling, Simulation and Control of Solid Oxide Fuel Cells

SOFCs: devices converting chemical energy in electricity

+ high e�ciency, �exibility wrt. fuel

� high operating temperature

Our goals: Models better suitable for control

Veri�ed methods for robustness

Modeling/simulation/control in VeriCell

3 / 26

VerIPC-SOFC Project

VerIPC-SOFC Project

A joint project between the Universities of Rostock and Duisburg-Essen

Development of the �exible software VeriCell

Task Method

Use of di�erent SOFC models
Model abstraction, Plugins

Interfacing of existing solvers

Parameter Optimization Global optimization

SOFC simulation and control ODE solver, DAE solver

→ Allow for using veri�ed and non-veri�ed methods

4 / 26

VerIPC-SOFC Project

Project Overview

Verified methods

Arithmetics

AE solvers

ODE solvers

DAE solvers

Optimizers

Project tasks

Models

Modeling/Simulation Control

Parameter optimization

Sensitivity

Probabilistic methods

Dempster-Shafer

Fault trees

Markov set chains

Verification systematics

V&V hierarchy: Class 1-4

Software engineering

Design

Floating point methods

Solvers for AE

ODE/DAE solvers

etc.

VeriCell

S
O

F
C

Duisburg

Rostock

Joint work

5 / 26

VerIPC-SOFC Project

VeriCell GUI

6 / 26

VerIPC-SOFC Project

Software Architecture

UniVerMec

Arithmetics
Problem

Description

Optimizer

VeriCell GUIData

SOFC models

External Solvers

ValEncIA-IVP
VNODE-LP

SOFC behavior

7 / 26

UniVerMeC

Ingredients of an SOFC Model Component

Model equation (IVP):
ẋ(p, u(t), t) = f (x(t), p, u(t))︸ ︷︷ ︸

y :R|s|+|p|+|u|→R|s|

depends on
t Time
p Parameters
u(t) Dependent parameters
s := x(t) Model states

Abstract IVP class

IVP

y : R|s|+|p|+|u| → R|s|

p

t

u(t)

u0 x0 t0

x(t)

Values for
Starting time t0
u0 = u(t0), p0 = p

x0 = x(t0)

Acts as a basis for

simulation

parameter optimization

8 / 26

UniVerMeC

Solving the IVPs (Simulation)

Information needed by an IVP solver
IVP
End time tend
Solver's speci�c options So

Possible solvers
Euler's method

ValEncIA-IVP
Needs derivatives of y

VNODE-LP
Needs Taylor coe�cients of
y and its Jacobian

IVP solver

IVP

t
end

So

x(t
end

)

How to represent an IVP (and y) for use with di�erent solvers?

9 / 26

UniVerMeC

UniVerMeC

Uni�ed Framework for Veri�ed GeoMetric Computations

core functions models decomp algorithms

A layer can access all layers left of it

Uniform handling of veri�ed techniques through a relaxed layer structure

core Adapter for underlying arithmetic libraries

functions Uniform representation for functions

models IVP models, Implicit surfaces, CSG models

decomp Multisection schemes, Spatial decomposition

algorithms Global optimization, IVP solver interfaces

10 / 26

UniVerMeC

Application in VeriCell

core

Uniform interfaces for arithmetics

functions

Uniform function representation

ivp_models

IVP model

representation

objects

Uniform geometric

object representation

section

Multisection schemes

and box management

trees

Uniform interval

tree representation

algorithms

Algorithms built upon the framework

Real/interval/a�ne arithmetic
Taylor models

Matrices and vectors

Model right hand side
Derivatives

Taylor coe�cients

SOFC models

Implicit objects/CSG-operations
Polyhedrons/parametric objects
Deformations/transformations

Naive/Ratz multisection
Coordinate direction weights

Standard interval trees
Contracting trees

Global optimization
VNODE-LP interface
ValEncIA-IVP interface

11 / 26

UniVerMeC

Representation of the Model's Right Hand Side

IDerivative

ISlope

ITaylorCoe�

. . .

F
eatu

res

IFunctionIVFunction

Speci�c
right side y

Right side y : Rn → R|s|
mapped to IVFunction

|s| member functions
f : Rn → R o�er
optional features

The interfaces

hide how y is really computed

hide how derivatives are computed

allow evaluation with di�erent arithmetics

12 / 26

UniVerMeC

Interfacing the Solvers

Euler's Method (�Veri�ed Approximation�)

yk := yk−1 + h · f (yk−1, p)

→ Directly implemented in UniVerMeC

VNODE-LP (Veri�ed)

1 Adapter for arithmetic compatibility to UniVerMeC

2 Implement VNODE's abstract AD interface

→ Both steps are possible thanks to VNODE's architecture

13 / 26

UniVerMeC

ValEncIA-IVP

ValEncIA-IVP
is coupled with libraries:

1 fadbad++

2 PROFIL/BIAS

→ Compatibility layer necessary

Not thread-safe
(ValEncIA-IVP uses global variables)

In our version
no recompiling for each problem

decoupled from speci�c libraries

ValEncIA-IVP

PROFIL/BIAS API FADBAD++ API

Compatibility layer

ValEncIA-IVP AWP

Representation

UniVerMeC

14 / 26

UniVerMeC

Solver Results

Problem
thermodynamics 1× 1× 1

IC
θ(0) = 299.7053
p = (p1, . . . , p23)
u(t) from measurement �le

Solver
ValEncIA (h=1)

0 1,000 2,000 3,000 4,000 5,000 6,000

400

600

800

Time (s)

T
em

p
er
at
u
re

(K
)

15 / 26

Parameter Identi�cation

Parameter Identi�cation

Goal
Parametrize the model for temperature in a robust and accurate way.

Φ(p) =
T∑

k=1

(y(tk , p)− ym(tk))2

with

p → Parameters to identify

y(t
k
, p)→ Simulated temperature at time t

ym(t
k

)→ Measured temperature at time t

T → Number of measurements (19963)

t
k−1
− t

k
= 1s → Step size 1s

SOFC model
IVP

IVP solver

Φ(p)
IFunction

Φ(p)p

→ Can be performed using di�erent models/IVP solvers.
(Currently, we use Euler's method.)

16 / 26

Parameter Identi�cation

Prolem Statement

Optimization problem

min
p∈p0

Φ(p)

Bound constraint problem (p0 ∈ IR6,widp0 = 2.0)
Initial vector for p0 derived by �oating-point methods

Di�culties

Objective function is computationally expensive

Calculating derivatives is really slow (even with fadbad++)

Considerable overestimation

→ Individual strategies for dealing with the problem (derivative free).

17 / 26

Parameter Identi�cation

Consistent States

Consistent parameter vectors

A state vector p is consistent if ∀t ∈ {0, ...,T}:

[y(t,p)] ⊆ ym(t) + [∆ym]

with the worst-case measurement error [∆ym] = [−15, 15] holds.

Inconsistent parameter vectors

A state vector p is inconsistent if ∃t ∈ {0, ...,T}:

[y(t,p)] ∩ (ym(t) + [∆ym]) = ∅

18 / 26

Parameter Identi�cation

Branch & Bound

Basic pattern

1 p ← L
2 Discard p if it is infeasible

3 Discard p if Φ(p) > D

4 Contract p

5 Update of D

6 Add p to L�nal if termination

criteria are satisfied

7 Split p and add new boxes to L

Main data structures

Two lists containing parts of
the search space (boxes)

Ordered working list L
Solution list L�nal

Termination criteria

widp ≤ εp, εp > 0

wid (Φ(p)) ≤ εΦ, εΦ > 0

Finds the minimum in the speci�ed starting box

Based on Hansen's interval optimization algorithm

19 / 26

Parameter Identi�cation

Con�gurable Algorithm in UniVerMeC

Divided into phases
Phase A

Phase Pos. Infeas.

Phase B

Phase Feasible

Phase C

Phase Strict. Feas.

Phase D

Phase Split

Con�guration

Phase A
Midpoint Test

Phase Feasible
Update upper bound

Phase D
Linearization and pruning based on the
consistency constraint

Phase Split
Calculate bound on Φ(p)
Check for (in)consistent states

20 / 26

Parameter Identi�cation

Use of GPU in Parameter Identi�cation

Φ(p) =
T∑

k=1

(y(tk , p)− ym(tk))2
Value of y(tk , p) depends on y(tk−1, p)

A single evaluation cannot be parallelized

But we can evaluate Φ(p) over di�erent subdivision intervals in parallel!

p1

p2

..

..

..

..

pn

GPU kernel
Data transfer

Φ(p1)

Φ(p2)

..

..

..

..

Φ(pn)

Result transfer

21 / 26

Parameter Identi�cation

Integration into the Optimization Algorithm

Take n boxes Multisection GPU kernel

L Take box CPU Phases Multisection

GPU and CPU run in parallel
Working list L is in host memory
One CPU thread feeds the GPU with data
Other CPU threads work normally

→ Currently, only bounds on Φ are derived using the GPU

22 / 26

Parameter Identi�cation

Quality Measure

Identi�ed candidate intervals p are characterized by

e =

√√√√√ T∑
k=1

(yk−1 − ym(tk) + f (yk−1,mid(p)))2

T
.

This measure is

practice-motivated

similar to the root mean square error measure

Candidate p with lowest e is chosen as solution, if there is no other way to
proof that p is the optimum (minimum).

23 / 26

Parameter Identi�cation

GPU Results (1× 1× 1)

Di�erence between measured and simulated temperature

-15

-10

-5

 0

 5

 10

 15

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
if
fe

re
n
c
e
 t
o
 m

e
a
s
u
re

 i
n
 K

 t

Time

Error measure Wall time

GPU 7.42944 ≈ 135s
CPU (OpenMP) 7.68 ≈ 2491s

24 / 26

Conclusions and Outlook

Conclusions & Outlook

Conclusions

An environment for SOFCs presented

Flexibility wrt. di�erent models and solvers implemented

Model parameters identi�ed by global optimization

A speed up of 18 achieved for the 1× 1× 1 model by GPU in the
parameter identi�cation algorithm (against the parallel CPU version)

Future Work

Incorporate further solvers

Allow easy addition of new models through a plugin based system

Simulations for more complicated models

25 / 26

Conclusions and Outlook

Thank You for Your Attention

Thank You for Your Attention!

26 / 26

References

E. Auer, S. Kiel, and A. Rauh.

Veri�ed parameter identi�cation for solid oxide fuel cells.

In In Proc. of REC 2012, 2012.

Accepted.

E. Hansen and G. W. Walster.

Global Optimization Using Interval Analysis.

Marcel Dekker, New York, 2004.

A. Rauh, T. Doetschel, E. Auer, and H. Aschemann.

Interval methods for control-oriented modeling of the thermal behavior of

high-temperature fuel cell stacks.

In In Proc. of SysID 2012, 2012.

Accepted.

27 / 26

	VerIPC-SOFC Project
	UniVerMeC
	Parameter Identification
	Conclusions and Outlook
	Appendix

