An Environment for Verified Modeling and Simulation of Solid Oxide Fuel Cells

Stefan Kiel, Ekaterina Auer and Andreas Rauh

SCAN 2012

Table of Contents

- 1 VerIPC-SOFC Project
- 2 UniVerMeC
- 3 Parameter Identification
- 4 Conclusions and Outlook

Modeling, Simulation and Control of Solid Oxide Fuel Cells

SOFCs:

devices converting chemical energy in electricity

- + high efficiency, flexibility wrt. fuel
- high operating temperature

Our goals:

- Models better suitable for control
- Verified methods for robustness
- Modeling/simulation/control in VeriCell

VerIPC-SOFC Project

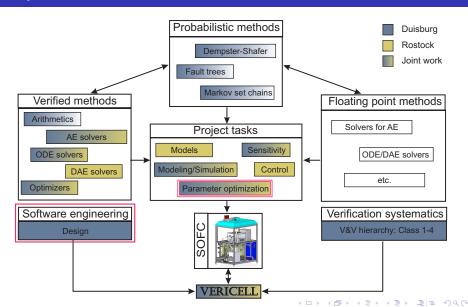
A joint project between the Universities of Rostock and Duisburg-Essen

Development of the flexible software VeriCell

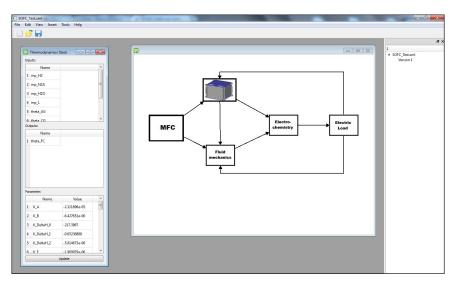
Task	Method	
Use of different SOFC models	Model abstraction, Plugins	
Interfacing of existing solvers		
Parameter Optimization	Global optimization	
SOFC simulation and control	ODE solver, DAE solver	

→ Allow for using verified and non-verified methods

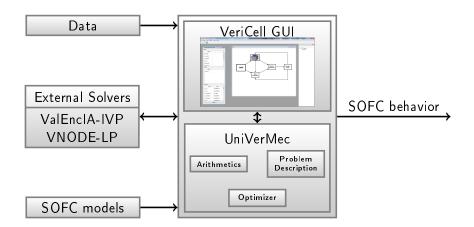
Project Overview



VeriCell GUI



Software Architecture



Ingredients of an SOFC Model Component

Model equation (IVP):

$$\dot{x}(p, u(t), t) = \underbrace{f\left(x(t), p, u(t)\right)}_{y: \mathbb{R}^{|s|+|p|+|u|} \to \mathbb{R}^{|s|}}$$

depends on

t Time

p Parameters

u(t) Dependent parameters s := x(t) Model states

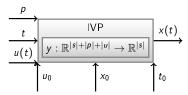
Values for

Starting time t_0

$$u_0=u(t_0), p_0=p$$

$$x_0 = x(t_0)$$

Abstract IVP class



Acts as a basis for

- simulation
- parameter optimization

Solving the IVPs (Simulation)

Information needed by an IVP solver

IVP

End time t_{end}

Solver's specific options S_{α}

Possible solvers

Euler's method

ValEncIA-IVP

Needs derivatives of y

VNODE-LP

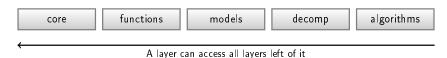
Needs Taylor coefficients of

y and its Jacobian

How to represent an IVP (and y) for use with different solvers?

UniVerMeC¹

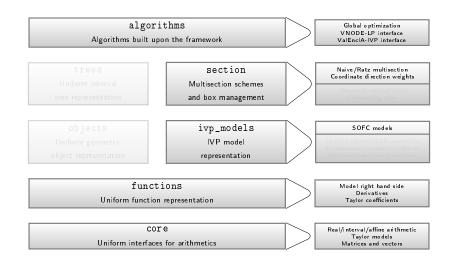
Unified Framework for Verified GeoMetric Computations



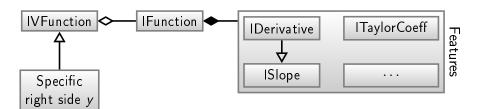
Uniform handling of verified techniques through a relaxed layer structure

```
core Adapter for underlying arithmetic libraries
functions Uniform representation for functions
models IVP models, Implicit surfaces, CSG models
decomp Multisection schemes, Spatial decomposition
algorithms Global optimization, IVP solver interfaces
```

Application in VeriCell



Representation of the Model's Right Hand Side



Right side $y: \mathbb{R}^n \to \mathbb{R}^{|s|}$ mapped to IVFunction

|s| member functions $f: \mathbb{R}^n \to \mathbb{R}$ offer optional features

The interfaces

- hide how y is really computed
- hide how derivatives are computed
- allow evaluation with different arithmetics

Interfacing the Solvers

Euler's Method ("Verified Approximation")

$$\mathbf{y}_k := \mathbf{y}_{k-1} + h \cdot f(\mathbf{y}_{k-1}, p)$$

→ Directly implemented in UniVerMeC

VNODE-LP (Verified)

- 1 Adapter for arithmetic compatibility to UniVerMeC
- 2 Implement VNODE's abstract AD interface
- ightarrow Both steps are possible thanks to VNODE's architecture

ValEnclA-IVP

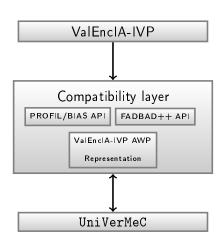
ValEnclA-IVP

is coupled with libraries:

- fadbad++
- PROFIL/BIAS
- \rightarrow Compatibility layer necessary

Not thread-safe (ValEncIA-IVP uses global variables)

In our version
no recompiling for each problem
decoupled from specific libraries



Solver Results

Problem

thermodynamics $1 \times 1 \times 1$

IC

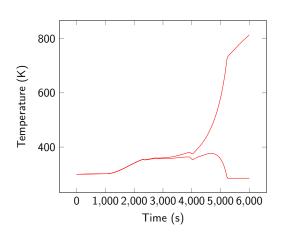
$$\theta(0) = 299.7053$$

$$p=(p_1,\ldots,p_{23})$$

u(t) from measurement file

Solver

ValEnclA (h=1)



Parameter Identification

 $t_{k-1}-t_k=1s o\mathsf{Step}$ size 1s

Goal

with

Parametrize the model for temperature in a robust and accurate way.

$$\Phi(p) = \sum_{k=1}^{T} (y(t_k, p) - y_m(t_k))^2$$

$$\downarrow p \rightarrow \text{Parameters to identify}$$

$$\downarrow y(t_k, p) \rightarrow \text{Simulated temperature at time t}$$

$$\downarrow y_m(t_k) \rightarrow \text{Measured temperature at time t}$$

$$\uparrow T \rightarrow \text{Number of measurements (19963)}$$

$$\downarrow p \rightarrow \Phi(p)$$

$$\downarrow \Phi(p)$$

$$\downarrow p \rightarrow \Phi(p)$$

$$\downarrow p \rightarrow \Phi(p)$$

$$\downarrow p \rightarrow \Phi(p)$$

$$\downarrow p \rightarrow \Phi(p)$$

$$\downarrow p \rightarrow$$

ightarrow Can be performed using different models/IVP solvers. (Currently, we use Euler's method.)

Prolem Statement

Optimization problem

```
\min_{p \in \boldsymbol{p}_0} \Phi(p)
```

Bound constraint problem ($\boldsymbol{p}_0 \in \mathbb{IR}^6$, wid $\boldsymbol{p}_0 = 2.0$) Initial vector for \boldsymbol{p}_0 derived by floating-point methods

Difficulties

- Objective function is computationally expensive
- Calculating derivatives is really slow (even with fadbad++)
- Considerable overestimation
- \rightarrow Individual strategies for dealing with the problem (derivative free).

Consistent States

Consistent parameter vectors

A state vector \boldsymbol{p} is consistent if $\forall t \in \{0,...,T\}$:

$$[y(t, \boldsymbol{p})] \subseteq y_m(t) + [\Delta y_m]$$

with the worst-case measurement error $[\Delta y_m] = [-15, 15]$ holds.

Inconsistent parameter vectors

A state vector \boldsymbol{p} is inconsistent if $\exists t \in \{0,...,T\}$:

$$[y(t, \boldsymbol{p})] \cap (y_m(t) + [\Delta y_m]) = \emptyset$$

Branch & Bound

Basic pattern

- 2 Discard p if it is infeasible
- $oxed{3}$ Discard $oldsymbol{
 ho}$ if $\Phi(oldsymbol{
 ho}) > \overline{D}$
- 4 Contract p
- $\overline{\mathbf{5}}$ Update of \overline{D}
- 6 Add $m{p}$ to $\mathcal{L}_{\mathrm{final}}$ if termination criteria are satisfied
- $m{7}$ Split $m{
 ho}$ and add new boxes to $m{\mathcal{L}}$

Main data structures

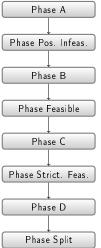
- Two lists containing parts of the search space (boxes)
- lacksquare Ordered working list ${\cal L}$
- lacksquare Solution list $\mathcal{L}_{\mathrm{final}}$

Termination criteria

- \bullet wid $\boldsymbol{p} \leq \epsilon_{\boldsymbol{p}}, \epsilon_{\boldsymbol{p}} > 0$
- wid $(\Phi(\mathbf{p})) \le \epsilon_{\Phi}, \epsilon_{\Phi} > 0$
- Finds the minimum in the specified starting box
- Based on Hansen's interval optimization algorithm

Configurable Algorithm in UniVerMeC

Divided into phases



Configuration

Phase AMidpoint Test

Phase FeasibleUpdate upper bound

Phase D

Linearization and pruning based on the consistency constraint

Phase Split

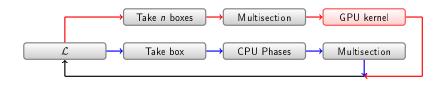
Calculate bound on $\Phi(\mathbf{p})$ Check for (in)consistent states

Use of GPU in Parameter Identification

$$\Phi(p) = \sum_{k=1}^{T} (y(t_k, p) - y_m(t_k))^2$$
 Value of $y(t_k, p)$ depends on $y(t_{k-1}, p)$
A single evaluation cannot be parallelized

But we can evaluate $\Phi(p)$ over different subdivision intervals in parallel!

Integration into the Optimization Algorithm



GPU and CPU run in parallel Working list \mathcal{L} is in host memory One CPU thread feeds the GPU with data Other CPU threads work normally

 \rightarrow Currently, only bounds on Φ are derived using the GPU

Quality Measure

Identified candidate intervals p are characterized by

$$e = \sqrt{\frac{\sum\limits_{k=1}^{T} (y_{k-1} - y_m(t_k) + f(y_{k-1}, \operatorname{mid}(\boldsymbol{p})))^2}{T}}$$

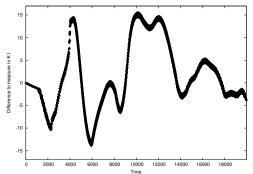
This measure is

- practice-motivated
- similar to the root mean square error measure

Candidate p with lowest e is chosen as solution, if there is no other way to proof that p is the optimum (minimum).

GPU Results $(1 \times 1 \times 1)$

Difference between measured and simulated temperature



	Error measure	Wall time
GPU	7.42944	$\approx 135s$
CPU (OpenMP)	7.68	pprox 2491s

Conclusions & Outlook

Conclusions

- An environment for SOFCs presented
- Flexibility wrt. different models and solvers implemented
- Model parameters identified by global optimization
- lacktriangle A speed up of 18 achieved for the $1 \times 1 \times 1$ model by GPU in the parameter identification algorithm (against the parallel CPU version)

Future Work

- Incorporate further solvers
- Allow easy addition of new models through a plugin based system
- Simulations for more complicated models

Thank You for Your Attention

Thank You for Your Attention!

References

E. Auer, S. Kiel, and A. Rauh.

Verified parameter identification for solid oxide fuel cells.

In Proc. of REC 2012, 2012

In In Proc. of REC 2012, 2012. Accepted.

E. Hansen and G. W. Walster.

Global Optimization Using Interval Analysis.

Marcel Dekker, New York, 2004.

A. Rauh, T. Doetschel, E. Auer, and H. Aschemann.

Interval methods for control-oriented modeling of the thermal behavior of high-temperature fuel cell stacks.

In *In Proc. of SysID 2012*, 2012. Accepted