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1. Interval Computations (IC): Brief Reminder

• One of the main problem of interval computations:

– Given: a function f(x1, . . . , xn) and intervals

xi = [xi, xi] = [x̃i −∆i, x̃i + ∆i],

– Compute: the range

y = f(x1, . . . ,xn) = {f(x1, . . . , xn) : xi ∈ xi}.

• Computing the exact range is known to be NP-hard,
even for quadratic f(x1, . . . , xn).

• So, instead, we compute an enclosure Y ⊇ y, with
excess width wid(Y )− wid(y) > 0.

• One of the most widely used methods of efficiently com-
puting Y is the Mean Value (MV) method:

Y = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(x1× . . .×xn) · [−∆i,∆i].
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2. Interval Computations: Reminder (cont-d)

• Mean Value (MV) method (reminder):

Y = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(x1× . . .×xn) · [−∆i,∆i].

• The ranges of the derivatives f,i
def
=

∂f

∂xi
can be esti-

mated, e.g., by using straightforward IC:

– parse the expression f,i, i.e., represent it as a se-
quence of elementary arithmetic operations, and

– replace each operation with numbers by the corre-
sponding operation of interval arithmetic.

• The Mean Value method has excess widthO(∆2), where

∆
def
= max ∆i.
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3. Can We Get Better Enclosures?

• The Mean Value method has excess width O(∆2)

• Can we come up with more accurate enclosures?

• We cannot get too drastic an improvement:

– even for quadratic functions f(x1 . . . , xn), comput-
ing the interval range is NP-hard

– and therefore (unless P=NP), a feasible algorithm
with excess width O(∆2+ε) is impossible.

• What we can do is try to decrease the overestimation
of the quadratic term.

• It turns out that such a possibility follows from an
inequality proven by A. Grothendieck in 1953.
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4. Main Idea

• The MV method is based on the 1st order Mean Value
Theorem (MVT):

f(x̃+∆x) = f(x̃)+
∑

f,i(x̃+η)·∆xi for some ηi ∈ [−∆i,∆i].

• Instead, we propose to use 3rd order MVT:

f(x̃+∆x) = f(x̃)+
∑

f,i(x̃)·∆xi+
1

2
·
∑

f,ij(x̃)·∆xi·∆xj+

1

6
·
∑

f,ijk(x̃+ η) ·∆xi ·∆xj ·∆xk.

• Specifically, we propose to add estimates for ranges of
linear, quadratic, and cubic terms.

• The range of the cubic term is estimated via straight-
forward interval comp.; the estimate is O(∆3).

• The range of the linear term f(x̃) +
∑
f,i(x̃) ·∆xi can

be explicitly described as [ỹ −∆, ỹ + ∆], where

ỹ
def
= f(x̃) and ∆ =

∑
|f,i(x̃)| ·∆i.
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5. Main Idea (cont-d)

• Reminder: we use the 3rd order MVT:

f(x̃+∆x) = f(x̃)+
∑

f,i(x̃)·∆xi+
1

2
·
∑

f,ij(x̃)·∆xi·∆xj+

1

6
·
∑

f,ijk(x̃+ η) ·∆xi ·∆xj ·∆xk.

• Specifically, we propose to add estimates for ranges of
linear, quadratic, and cubic terms.

• The range of the linear term can be computed exactly.

• The range of the cubic term is O(∆3)� O(∆2).

• What remains is to estimate the range [−Q,Q] of the

quadr. term
n∑

i,j=1

aij ·∆xi ·∆xj
(
aij

def
=

1

2
· f,ij(x̃)

)
on

[−∆1,∆1]× . . .× [−∆n,∆n].
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6. Relation to Grothendieck Inequality

• Problem: estimating the range [−Q,Q] of
n∑

i,j=1

aij ·∆xi ·∆xj on [−∆1,∆1]× . . .× [−∆n,∆n].

• Re-scaling: for zi
def
= ∆xi/∆i, we have zi ∈ [−1, 1],

∆xi = ∆i · zi, and the quadratic form becomes:
n∑

i,j=1

bij · zi · zj, with bij
def
= aij ·∆i ·∆j.

• Thus: Q = max

{
n∑

i,j=1

bij · zi · zj : zi ∈ [−1, 1]

}
.

• Grothendieck’s inequality enables us to estimate the
maximum Q′ of a related bilinear function

b(z, t)
def
=

n∑
i,j=1

bij · zi · tj, zi, tj ∈ {−1, 1}.
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7. Grothendieck Inequality (cont-d)

• Auxiliary problem: estimating

Q′ = max

{
n∑

i,j=1

bij · zi · tj : zi, tj ∈ {−1, 1}

}
.

• This problem is known to be NP-hard.

• General fact: discrete optimization problems are more
complex than continuous ones.

• Observation: the discrete set {−1, 1} is a unit sphere
in 1-D Euclidean space.

• Interesting: for larger dimensions, a unit sphere is con-
nected (hence not discrete).

• Grothendieck’s idea: consider zi and tj from the unit
sphere in a Hilbert space (=∞-dim. Euclidean space).
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8. Grothendieck’s Result and Related Algorithm

• We want to compute:

Q′ = max

{
n∑

i,j=1

bij · zi · tj : zi, tj ∈ {−1, 1}

}
.

• We estimate instead:

Q′′
def
= max

{
n∑

i,j=1

bij · 〈zi, tj〉 : zi, tj ∈ S

}
.

• Grothendieck’s inequality: for some universal constant

KG ∈ [1, 1.782], we have
1

KG
·Q′′ ≤ Q′ ≤ Q′′.

• Comment: the part Q′ ≤ Q′′ is trivial, since we can
have all zi and tj equal to ±e for some unit vector e.

• Computational result: an ellipsoid method – similar to
linear programming one – can feasibly compute Q′′.
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9. How to Use This Algorithm to Estimate the
Range [−Q,Q] of the Quadratic Part

• We want to estimate: Q = max{B(z) : zi ∈ [−1, 1]},
where B(z)

def
= b(z, z) and b(z, t) =

n∑
i,j=1

bij · zi · tj.

• We know: Q′ = max{b(z, t) : zi ∈ {−1, 1}, tj ∈ {−1, 1}}.

• Fact: a bilinear f-n b(z, t) attains its max at endpoints.

• Hence: Q′ = max{b(z, t) : zi ∈ [−1, 1], tj ∈ [−1, 1]}.

• Since b(z, t) = B((z + t)/2) − B((z − t)/2), we have
Q′ ≤ 2Q. Clearly, Q ≤ Q′, hence Q′/2 ≤ Q ≤ Q′.

• From K−1G ·Q′′ ≤ Q′ ≤ Q′′, we can now conclude that

Q′′

2KG
≤ Q ≤ Q′′.

• Hence: by computing Q′′, we can feasibly estimate Q
accurately modulo a small constant factor 2KG ≤ 3.6.
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10. Resulting Algorithm

• According to the 3rd order Mean Value Theorem, for
∆xi ∈ [−∆i,∆i], we have:

f(x̃+ ∆x) = T1 + T2 + T3, where:

T1
def
= f(x̃) +

∑
f,i(x̃) ·∆xi;

T2
def
=
∑

aij ·∆xi ·∆xj, where aij =
1

2
· f,ij(x̃); and

T3
def
=

1

6
·
∑

f,ijk(x̃+ η) ·∆xi ·∆xj ·∆xk.

• As an enclosure for the range of f , we take the sum of
enclosures for T1, T2, and T3.

• For T1, we compute the exact range in linear time O(n).

• For T3, we use straightforward interval computations
and get an enclosure of width

O(∆3)� O(∆2).
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11. Resulting Algorithm (cont-d)

• To estimate the range [−Q,Q] of the quadratic term
T2 =

∑
aij ·∆xi ·∆xj, we do the following:

– compute an auxiliary matrix bij = aij ·∆i ·∆j, and

– use the ellipsoid method to compute

Q′′
def
= max

{
n∑

i,j=1

bij · 〈zi, tj〉 : zi, tj ∈ S

}
.

• Then,
Q′′

2KG
≤ Q ≤ Q′′, with 2 ≤ 2KG ≤ 3.6.

• Why this is better that the Mean Value method:

– we still get excess width O(∆2), but

– this time, we overestimate the quadratic terms by
no more than a known constant factor.
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