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Interval Computations. . .

1. Interval Computations (IC): Brief Reminder

e One of the main problem of interval computations:
— Given: a function f(zq,...,z,) and intervals
x; =[x, %] = [T; — Ay, T + A,
— Compute: the range
y=flxy,....x,) ={f(x1,...,2,) 1 7 € T;}.

e Computing the exact range is known to be NP-hard,
even for quadratic f(xq,...,x,).

e So, instead, we compute an enclosure Y O y, with
excess width wid(Y') — wid(y) > 0.

e One of the most widely used methods of efficiently com-
puting Y is the Mean Value (MV) method:

Y = fZCl,.. ZIIn —I—Za

. X $n) . [—Ai, Az]




Can We Get Better. ..

2. Interval Computations: Reminder (cont-d)

e Mean Value (MV) method (reminder):

Y = f L1yen- xn + E a an)[—A,,Az]

¢ 0f .

e The ranges of the derivatives f i = 8_ can be esti-
x

mated, e.g., by using straightforward IC:
— parse the expression f;, i.e., represent it as a se-
quence of elementary arithmetic operations, and

— replace each operation with numbers by the corre-
sponding operation of interval arithmetic.

e The Mean Value method has excess width O(A?), where

def
AimaXA




3. Can We Get Better Enclosures?

Main Idea

e The Mean Value method has excess width O(A?)
e Can we come up with more accurate enclosures?
e We cannot get too drastic an improvement:

— even for quadratic functions f(z7...,xz,), comput-
ing the interval range is NP-hard

— and therefore (unless P=NP), a feasible algorithm
with excess width O(A%*™€) is impossible.

e What we can do is try to decrease the overestimation
of the quadratic term.

e [t turns out that such a possibility follows from an
inequality proven by A. Grothendieck in 1953.




4. Main Idea

e The MV method is based on the 1st order Mean Value Refation to..
Theorem (MVT):

f(z+Azx) = f(f)—l—z fi(@+n)-Az; for some n; € [—A;, A].
e Instead, we propose to use 3rd order MVT:

f@+Az) = f(@)+)_ fi(@ Aa:z—l— Z fii(@)-Axy-Axj+

6 ' Z Liie(@ +n) - Az, - Az - Axy,.
e Specifically, we propose to add estimates for ranges of

linear, quadratic, and cubic terms.

e The range of the cubic term is estimated via straight-
forward interval comp.; the estimate is O(A3).

e The range of the linear term f(Z)+ Y. f;(Z) - Az; can
be explicitly described as [y — A,y + A] where

Ndef andA Z|f




5. Main Idea (cont-d)
e Reminder: we use the 3rd order MVT:
f(z+Azx) = -I—Zf Aa:l—l— Zf” )-Az-Ax i+

Grothendieck’s Result. . .

1 ~
6 . Z fyijk(iﬂ + 77) . ALB, . ij . Axk

e Specifically, we propose to add estimates for ranges of
linear, quadratic, and cubic terms.

e The range of the linear term can be computed exactly.
e The range of the cubic term is O(A3) < O(A?).

e What remains is to estimate the range [—Q, Q] of the

n of 1
quadr. term Y a;; - Az, - Az ( ajj = fzy( ))

i,j=1

[—Al, Al] X ... X [—An, An]




6. Relation to Grothendieck Inequality

e Problem: estimating the range [—Q, Q)] of

Z Qjj Aa:l . A{I;j on [—Al, Al] X ... X [—An, An] How to Use This. ..

1,7=1

e Re-scaling: for z; def Ax;/A;, we have z; € [—1,1],
Azx; = A; - z;, and the quadratic form becomes:

n
. def
E bij 2 Zj, Wlth bz’j = aij . Az . Aj.
i,j=1

o Thus: @ :max{ Yobijcziczjtz € [—1,1]} :
ij=1

e Grothendieck’s inequality enables us to estimate the
maximum @’ of a related bilinear function

n
b(z,t) o Z bz’j <z by, z,tj € {—1, 1}
ij=1




7. Grothendieck Inequality (cont-d)

e Auziliary problem: estimating

Q’:maX{Zbij-zi-tj:zi,tj € {—1,1}}.

i.j=1

Resulting Algorithm

e This problem is known to be NP-hard.
e (General fact: discrete optimization problems are more
complex than continuous ones.

e Observation: the discrete set {—1,1} is a unit sphere
in 1-D Euclidean space.

e Interesting: for larger dimensions, a unit sphere is con-
nected (hence not discrete).

e Grothendieck’s idea: consider z; and t; from the unit
sphere in a Hilbert space (= oco-dim. Euclidean space).




8. Grothendieck’s Result and Related Algorithm

o We want to compute:

n
Q':maX{Zbij-zi-tj : Zi,tj € {—1,1}}.
ij—=1

Acknowledgments

o We estimate instead:

Q" e {Z bij - (zi,t) : ziytj € S}

—

i,y=1
e Grothendieck’s inequality: for some universal constant
1
K¢ € [1,1.782], we have - Q' <Q <qQ".
G
e Comment: the part Q" < Q" is trivial, since we can
have all z; and ¢; equal to fe for some unit vector e.

e Computational result: an ellipsoid method — similar to
linear programming one — can feasibly compute Q".




9. How to Use This Algorithm to Estimate the
Range [—Q, Q] of the Quadratic Part

o We want to estimate: Q@ = max{B(z) : z; € [-1,1]},
where B(z) oo b(z,z) and b(z,t) = > bij- 2 - t;.

ij=1
o We know: Q' = max{b(z,t): z; € {—1,1},t; € {—1,1}}.
e Fuct: a bilinear f-n b(z, ) attains its max at endpoints. Rfﬁ
o Hence: ) = max{b(z,t): 2z € [-1,1],t; € [-1,1]}. T
[ = — —
gz’n;eQbC(;,tC)leaﬂi(g ;r 8’/,2}zenceB(C§’z/ 2 2222)37 g’e e ———
e From K;'- Q" < @ < Q", we can now conclude that KN =
“ <o<q
2K

e Hence: by computing )", we can feasibly estimate ()
accurately modulo a small constant factor 2K < 3.6.




10. Resulting Algorithm

e According to the 3rd order Mean Value Theorem, for
Azx; € [—=A;, A;], we have:

f(ff—l— Aaz) =T, + Ty + T3, where:

def _|_ Z f AZEZ,

1

def Z Qjj - A%, : ij, where A5 = 5 : fﬂ‘j(f); and

Ty =

of 1
ngf " fin(@ 4 n) - Aw; - Ay Ay

e As an enclosure for the range of f, we take the sum of
enclosures for 17, Ty, and T3.

e For T}, we compute the exact range in linear time O(n).

e For T3, we use straightforward interval computations
and get an enclosure of width

O(A%) < O(A?).




11. Resulting Algorithm (cont-d)

e To estimate the range [—Q, Q] of the quadratic term
Ty = > a;j - Ax; - Az, we do the following:
— compute an auxiliary matrix b;; = a;; - A; - A, and

— use the ellipsoid method to compute

Q" . {Z bij - (zi, tj) : ziytj € S} .

1,7=1

Q//

e Then, < Q< Q" with 2 <2Kq < 3.6.
2Kq

o Why this is better that the Mean Value method:
— we still get excess width O(A?), but

— this time, we overestimate the quadratic terms by
no more than a known constant factor.
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