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Decision Making: . ..

1. Decision Making: General Need and Traditional
Approach

e To make a decision, we must:

— find out the user’s preference, and
— help the user select an alternative which is the best

— according to these preferences.

e Traditional approach is based on an assumption that
for each two alternatives A" and A”, a user can tell:

— whether the first alternative is better for him/her;
we will denote this by A” < A’;

— or the second alternative is better; we will denote
this by A’ < A”;

— or the two given alternatives are of equal value to
the user; we will denote this by A" = A”.




2. The NOtiOD Of Utility The Notion of Utility

e Under the above assumption, we can form a natural
numerical scale for describing preferences.

e Let us select a very bad alternative Ay and a very good
alternative Aj.

e Then, most other alternatives are better than Ay but
worse than Aj.

e For every prob. p € [0,1], we can form a lottery L(p)
in which we get A; w/prob. p and Ay w/prob. 1 — p.

e When p = 0, this lottery simply coincides with the
alternative Ag: L(0) = Ay.

e The larger the probability p of the positive outcome
increases, the better the result:

p' < p” implies L(p') < L(p").




3.

The Notion of Utility (cont-d)
e Finally, for p = 1, the lottery coincides with the alter-
native Ay: L(1) = A;.

e Thus, we have a continuous scale of alternatives L(p)
that monotonically goes from L(0) = A to L(1) = A;.

e Due to monotonicity, when p increases, we first have
L(p) < A, then we have L(p) > A.

e The threshold value is called the utility of the alterna-
tive A:

u(A) o sup{p: L(p) < A} =inf{p: L(p) > A}.
e Then, for every ¢ > 0, we have
L(u(A) —e) < A< L(u(A) + ).

e We will describe such (almost) equivalence by =, i.e.,
we will write that A = L(u(A)).

From Utility to. ..




4.

Fast Iterative Process for Determining u(A)
e [nitially: we know the values u = 0 and w = 1 such
that A = L(u(A)) for some u(A) € [u,d.

e What we do: we compute the midpoint u,;q of the
interval [u, ] and compare A with L(umpiq)-

o Possibilities: A < L(umq) and L(umyq) < A.
o Case 1:if A < L(uwyiq), then u(A) < tpiq, S0
U € [U, Unid]-
o Case 2: if L(upiq) < A, then upq < u(A), so
U € [Uniq, 1.
e After each iteration, we decrease the width of the in-
terval [u, @] by half.

o After k iterations, we get an interval of width 27* which
contains u(A) —i.e., we get u(A) w/accuracy 2.

Beyond Interval . . .




5.

How to Make a Decision Based on Utility Val-
ues

e Suppose that we have found the utilities u(A"), u(A"),
..., of the alternatives A’, A”, ...
e Which of these alternatives should we choose?
e By definition of utility, we have:
o A= L(u(A)) for every alternative A, and
o L(p') < L(p") if and only if p’ < p”.

e We can thus conclude that A’ is preferable to A” if and
only if u(A") > u(A").

e In other words, we should always select an alternative
with the largest possible value of utility.

e Interval techniques can help in finding the optimizing
decision.

Multi-Agent . . .




6.

How to Estimate Utility of an Action

e For each action, we usually know possible outcomes

Sty S

e We can often estimate the prob. py, ..., p, of these out-
comes.

e By definition of utility, each situation S; is equiv. to a
lottery L(u(S;)) in which we get:
e Ay with probability «(S;) and
e Ay with the remaining probability 1 — u(S5;).
e Thus, the action is equivalent to a complex lottery in
which:
e first, we select one of the situations S; with proba-
bility p;i: P(Si) = pi;
e then, depending on S;, we get A; with probability
P(A1]S;) = u(S;) and Ay w/probability 1 —u(S;).

Beyond Optimization
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7.

How to Estimate Utility of an Action (cont-d)

e Reminder:

e first, we select one of the situations S; with proba-
bility p;: P(S;) = pi;

e then, depending on 5;, we get A; with probability
P(A1]S;) = u(S;) and Ay w/probability 1 —u(S;).

e The prob. of getting A; in this complex lottery is:
P(A) =) P(A|S)-P(S;) =>_ u(S:) - pi.
i=1 i=1

e In the complex lottery, we get:

e Ay with prob. u = > p; - u(95;), and
i=1
o Ay w/prob. 1 — u.

e So, we should select the action with the largest value
of expected utility u =Y p; - u(.S;).

Even Further Beyond. ..
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8.

Non-Uniqueness of Utility

e The above definition of utility u depends on Ay, A;.

e What if we use different alternatives Aj and A}?

e Every A is equivalent to a lottery L(u(A)) in which we
get Ay w/prob. u(A) and Ay w/prob. 1 —u(A).

e For simplicity, let us assume that Aj < Ag < 4; < A].

e Then, Ay = L'(v/(Ap)) and A; = L' (u/(Ay)).

e So, A is equivalent to a complex lottery in which:
1) we select A; w/prob. u(A) and Ay w/prob. 1—u(A);

2) depending on A;, we get A} w/prob. u/(4;) and Aj
w/prob. 1 —u'(4;).

e In this complex lottery, we get A} with probability
w(A) =u(A) - (W (Ay) — /' (Ag)) + v/ (Ap).

e So, in general, utility is defined modulo an (increasing)
linear transformation v’ = a - u + b, with a > 0.
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9.

Subjective Probabilities

e In practice, we often do not know the probabilities p;
of different outcomes.

e For each event F, a natural way to estimate its subjec-
tive probability is to fix a prize (e.g., $1) and compare:
— the lottery /g in which we get the fixed prize if the
event E occurs and 0 is it does not occur, with
— a lottery ¢(p) in which we get the same amount
with probability p.

e Here, similarly to the utility case, we get a value ps(E)
for which, for every ¢ > 0:

l(ps(E) —e) <ty < l(ps(E) +e¢).

e Then, the utility of an action with possible outcomes
n
S1,..., S, is equal to u = > ps(E;) - u(S;).
i=1




10. Beyond Traditional Decision Making: Towards
a More Realistic Description

e Previously, we assumed that a user can always decide
which of the two alternatives A’ and A” is better:

— either A" < A”,
—or A" < A,
—or A= A",

e In practice, a user is sometimes unable to meaningfully
decide between the two alternatives; denoted A’ || A”.

e In mathematical terms, this means that the preference
relation:

— is no longer a total (linear) order,

— it can be a partial order.




11. From Utility to Interval-Valued Utility

e Similarly to the traditional decision making approach:

— we select two alternatives Ay < A; and
— we compare each alternative A which is better than
Ap and worse than A; with lotteries L(p).
e Since preference is a partial order, in general:
w(A) Y sup{p: L(p) < A} < u(A) & inf{p: L(p) > A}.

e For each alternative A, instead of a single value u(A)
of the utility, we now have an interval [u(A),w(A)] s.t.:

—if p < u(A), then L(p) < A;
—if p > w(A), then A < L(p); and
—if u(A) < p <u(A), then A || L(p).

e We will call this interval the utility of the alternative A.




12. Interval-Valued Utilities and Interval-Valued
Subjective Probabilities

e To feasibly elicit the values u(A) and w(A), we:
1) starting w/[u,u] = [0, 1], bisect an interval s.t.
L(u) < A < L(u) until we find ug s.t. A || L(ug);
2) by bisecting an interval [u, ug] for which
L(u) < A || L(ug), we find u(A);
3) by bisecting an interval [ug, u] for which
L(up) || A < L(u), we find u(A).

e Similarly, when we estimate the probability of an event E':

— we no longer get a single value ps(FE);
— we get an interval [ps(E),ps(E)] of possible values
of probability.

e By using bisection, we can feasibly elicit the values
ps(E) and ps(E).




13. Decision Making Under Interval Uncertainty
e Situation: for each possible decision d, we know the
interval [u(d),@(d)] of possible values of utility.
e (Questions: which decision shall we select?

e Natural idea: select all decisions dy that may be opti-
mal, i.e., which are optimal for some function

u(d) € [u(d),u(d)].
e Problem: checking all possible functions is not feasible.

e Solution: the above condition is equivalent to an easier-
to-check one:
u(dy) > mc?xg(d).

e Interval computations can help in describing the range
of all such dy.

e Remaining problem: in practice, we would like to select
one decision; which one should be select?




14. Need for Definite Decision Making

o At first glance: if A" || A”, it does not matter whether
we recommend alternative A’ or alternative A”.

e Let us show that this is not a good recommendation.

e E.g., let A be an alternative about which we know
nothing, i.e., [u(A),u(A)] = [0, 1].

e In this case, A is indistinguishable both from a “good”
lottery £(0.999) and a “bad” lottery L(0.001).

e Suppose that we recommend, to the user, that A is
equivalent both to L(0.999) and to L(0.001).

e Then this user will feel comfortable:

— first, exchanging £(0.999) with A, and
— then, exchanging A with L(0.001).

e So, following our recommendations, the user switches
from a very good alternative to a very bad one.




15. Need for Definite Decision Making (cont-d)

e The above argument does not depend on the fact that
we assumed complete ignorance about A:

— every time we recommend that the alternative A is
“equivalent” both to L(p) and to L(p') (p < p'),

— we make the user vulnerable to a similar switch
from a better alternative L(p) to a worse one L(p).

e Thus, there should be only a single value p for which
A can be reasonably exchanged with L(p).

e In precise terms:

— we start with the utility interval [u(A),u(A)], and

— we need to select a single u(A) for which it is rea-
sonable to exchange A with a lottery L(u).

e How can we find this value u(A)?




16. Decisions under Interval Uncertainty: Hur-
wicz Optimism-Pessimism Criterion

e Reminder: we need to assign, to each interval [u, @], a
utility value u(u,w) € [u,ul.

e History: this problem was first handled in 1951, by the
future Nobelist Leonid Hurwicz.

o Notation: let us denote ayy & u(0,1).

o Reminder: utility is determined modulo a linear trans-
formation v’ = a - u + b.

e Reasonable to require: the equivalent utility does not
change with re-scaling: for a > 0 and b,

uwla-u” +ba-u”+b) =a - ulu,ut)+b.
eforu  =0,u"=1,a=7u—u, and b = u, we get

u(w, ) =ag-(U—u)+u=ayg-u+ (1 —ay)-u.




17. Hurwicz Optimism-Pessimism Criterion (cont)

e The expression ay - u+ (1 —ay)-u is called optimism-
pessimism criterion, because:

— when ay = 1, we make a decision based on the
most optimistic possible values u = u;

— when ay = 0, we make a decision based on the
most pessimistic possible values u = u;

— for intermediate values ay € (0, 1), we take a weighted
average of the optimistic and pessimistic values.

e According to this criterion:

— if we have several alternatives A’, ..., with interval-
valued utilities [u(A’),u(A")], ...,

— we recommend an alternative A that maximizes

oy - E(A) + (1 — CYH) . Q(A)




18. Which Value ay Should We Choose? An Ar-
gument in Favor of ay = 0.5
e Let us take an event £ about which we know nothing.

e For a lottery L™ in which we get A; if E and Aj oth-
erwise, the utility interval is [0, 1].

e Thus, the equiv. utility of L* is ay-14+(1—apy)-0 = ay.

e For a lottery L™ in which we get A if £ and A; oth-
erwise, the utility is [0, 1], so equiv. utility is also ay.

e For a complex lottery L in which we select either L™ or
L~ with probability 0.5, the equiv. utility is still ay.

e On the other hand, in L, we get A; with probability
0.5 and Ay with probability 0.5.

e Thus, L = L(0.5) and hence, u(L) = 0.5.

e So, we conclude that ay = 0.5.




19. Which Action Should We Choose?

e Suppose that an action has n possible outcomes Sy, ..., S,
with utilities [u(S;),u(S;)], and probabilities [p, p;].

e We know that each alternative is equivalent to a simple
lottery with utility u; = ag - w(S;) + (1 — ag) - u(S;).
e We know that for each i, the i-th event is equivalent
top; =ag-p;+ (1 —an) - p.
e Thus, this action is equivalent to a situation in which
we get utility u; with probability p;.
n
e The utility of such a situation is equal to > p; - u;.
i=1
e Thus, the equivalent utility of the original action is

equivalent to

n

3 (aH B+ (1— ag) -]_9i>-(aH (S + (1 — an)-ulS)).

1=1




20. Observation: the Resulting Decision Depends
on the Level of Detail

e Let us consider a situation in which, with some prob. p,
we gain a utility u, else we get 0.

e The expected utility is p-u+ (1 —p)-0=p- u.
e Suppose that we only know the intervals [u, @] and [p, p].
e The equivalent utility uy (k for know) is

up = (ag - p+ (1 —ag) p) (ag-u+ (1 —ag)-u).
o If we only know that utility is from [p - u,p - @, then:

ug=ag-p-u+(1—ag) p-u(dfor dn’t know).
e Here, additional knowledge decreases utility:

ug —up = ag - (1 —ag)-(p—p)- (@—u)>0.

e (This is maybe what the Book of Ecclesiastes meant
by “For with much wisdom comes much sorrow”?)




21. Beyond Interval Uncertainty: Partial Info about
Probabilities

e [requent situation:

— in addition to x;,
— we may also have partial information about the
probabilities of different values z; € x;.

e An exact probability distribution can be described, e.g.,
by its cumulative distribution function

F;(z) = Prob(z; < z).
e A partial information means that instead of a single
cdf, we have a class F of possible cdfs.
e p-box (Scott Ferson):

— for every z, we know an interval F(2) = [F(2), F(2)];

— we consider all possible distributions for which, for
all z, we have F(2) € F(2).




22. Describing Partial Info about Probabilities:
Decision Making Viewpoint

e Problem: there are many ways to represent a probabil-
ity distribution.
e [dea: look for an objective.

e Objective: make decisions F,|u(x,a)] — max.
a

e Case 1: smooth u(x).

e Analysis: we have u(x) = u(xg) + (v — o) - ' (x0) + . ..
e Conclusion: we must know moments to estimate E[u].
e Case of uncertainty: interval bounds on moments.

e Case 2: threshold-type u(z) (e.g., regulations).

e Conclusion: we need cdf F(z) = Prob(§ < ).

e Case of uncertainty: p-box [F(z), F(z)].




23. What if Intervals are Difficult to Elicit

e Problem: in some situations, it is difficult to elicit even
interval-valued utilities.

e (Case study: selecting a location for a meteorological
tower.

e What we can use for decision making: in many such
situations, there are reasonable symmetries.

e (Good news: in such cases, we can often use symmetries
to select an optimal decision.

e We show: how this works on the case study example.




24. Case Study

e Objective: select the best location of a sophisticated
multi-sensor meteorological tower.

e Constraints: we have several criteria to satisty.

e Fxample: the station should not be located too close
to a road.

e Motivation: the gas flux generated by the cars do not
influence our measurements of atmospheric fluxes.

e Formalization: the distance x; to the road should be
larger than a threshold t1: 1 > t1, or y; def r1—t1 > 0.

e Frample: the inclination zo at the tower’s location
should be smaller than a threshold t5: z9 < ts.

e Motivation: otherwise, the flux determined by this in-
clination and not by atmospheric processes.




25. General Case
e In general: we have several differences 1, ...,y, all of
which have to be non-negative.

e For each of the differences y;, the larger its value, the
better.

e Our problem is a typical setting for multi-criteria op-
timization.

e A most widely used approach to multi-criteria opti-
mization is weighted average, where

— we assign weights wq, ..., w, > 0 to different crite-
ria g; and
— select an alternative for which the weighted average

Wy -Yr+ ...+ Wy Yp

attains the largest possible value.




26. Limitations of the Weighted Average Approach

e In general: the weighted average approach often leads
to reasonable solutions of the multi-criteria problem.

e [n our problem: we have an additional requirement —
that all the values y; must be positive. So:

— when selecting an alternative with the largest pos-
sible value of the weighted average,

— we must only compare solutions with y; > 0.

o We will show: under the requirement y; > 0, the
weighted average approach is not fully satisfactory.

e Conclusion: we need to find a more adequate solution.




27. Limitations of the Weighted Average Approach:
Details

e The values y; come from measurements, and measure-
ments are never absolutely accurate.

e The results y; of the measurements are not exactly
equal to the actual (unknown) values y;.

e [f: for some alternative y = (y1,...,¥n)

— we measure the values y; with higher and higher
accuracy and,

— based on the measurement results 1;, we conclude
that y is better than some other alternative y/'.

e Then: we expect that the actual alternative y is indeed
better than y' (or at least of the same quality).

e Otherwise, we will not be able to make any meaningful
conclusions based on real-life measurements.




28. The Above Natural Requirement Is Not Al-
ways Satisfied for Weighted Average

e Simplest case: two criteria y; and vy, w/weights w; > 0.

o Ify1, 92,1, y5 > 0, and wy - y1 +wa -y > wi-y) +wa -y,
then y = (y1,92) = y' = (41, ).

o If y; > 0, y» > 0, and at least one of the values y; and
Yy is non-positive, then y = (y1,y2) = v = (¥}, v5)-

e Let us consider, for every € > 0, the tuple

y(e) dof (e,14 wyi/wsy), and ¢y’ = (1,1).

e In this case, for every € > 0, we have

w
wi-y1(e)Fwa-ya(e) = w1.5_|_w2_|_w2.w_1 = wi-(14€)+w
2

and wy - i + ws - yh = wy + wy, hence y(e) =y

e However, in the limit € — 0, we have y(0) = (0, 1+ E),
W
with y(0); = 0 and thus, y(0) < ¢/'.




29. Towards a Precise Description

e Each alternative is characterized by a tuple of n posi-
tive values y = (y1, ..., Yn)-

e Thus, the set of all alternatives is the set (R™)" of all
the tuples of positive numbers.

e For each two alternatives y and v/, we want to tell
whether

— y is better than y’ (we will denote it by y > ¢ or
Yy <y),

— or 3/ is better than y (v = v),

—or y and ¥’ are equally good (v ~ v).

e Natural requirement: if y is better than 3’ and 3/ is
better than y”, then y is better than y”.

e The relation = must be transitive.




30. Towards a Precise Description (cont-d)

e Reminder: the relation = must be transitive.

e Similarly, the relation ~ must be transitive, symmetric,
and reflexive (y ~ y), i.e., be an equivalence relation.

e An alternative description: a transitive pre-ordering
relationa > b< (a = bVa~b)st.a=bV b= a.

e Then,a~b< (a=b)& (b= a), and
a-be (a=b)& (b a).

e Additional requirement:

— if each criterion is better,

— then the alternative is better as well.

e Formalization: if y; > y. for all ¢, then y > v/




31. Scale Invariance: Motivation

e Fuct: quantities y; describe completely different phys-
ical notions, measured in completely different units.

e Framples: wind velocities measured in m/s, km/h,
mi/h; elevations in m, km, ft.

e Each of these quantities can be described in many dif-
ferent units.

e A priori, we do not know which units match each other.

e Units used for measuring different quantities may not
be exactly matched.

e [t is reasonable to require that:

— if we simply change the units in which we measure
each of the corresponding n quantities,

— the relations > and ~ between the alternatives y =
(y1,.--,yn) and ¥ = (v, ..., 7y, ) do not change.




32. Scale Invariance: Towards a Precise Descrip-
tion

e Situation: we replace:

e a unit in which we measure a certain quantity ¢

e by a new measuring unit which is A > 0 times
smaller.

e Result: the numerical values of this quantity increase
by a factor of A: ¢ = A - q.

e Fxample: 1 cm is A = 100 times smaller than 1 m, so
the length ¢ = 2 becomes A - ¢ = 2 - 100 = 200 cm.

e Then, scale-invariance means that for all y,y’ € (R*)"
and for all \; > 0, we have

o y=(y1,...,yn) =y = (v1,-..,y,) implies
(>\1'y17---,)\n'yn)>‘(>\1'y3’[,-~-7)\n'y7/1)7
o y=(y1, ... yn) ~y = (y1,-..,y,) implies
Ay A ) ~ (AW, A ).




33. Formal Description

e By a total pre-ordering relation on a set Y, we mean
— a pair of a transitive relation > and an equivalence
relation ~ for which,
— for every y,y € Y, exactly one of the following
relations hold: y >~ v/, v/ =y, or y ~ ¢/

e We say that a total pre-ordering is non-trivial if there
exist y and vy’ for which y = /.

e We say that a total pre-ordering relation on (R™)" is:
— monotonic if y, > y; for all ¢ implies ¢’ > y;
— continuous if

* whenever we have a sequence y*) of tuples for
which y® = ¢/ for some tuple ¢/, and

* the sequence y*) tends to a limit v,

* then vy = v/




34. Main Result

Theorem. Fuvery non-trivial monotonic scale-inv. contin-
uous total pre-ordering relation on (R™)" has the form:

n n
y': (yi,,y;,) -y = (yl,...,yn) @H(yg)az > Hyfzz,
i=1 i=1

n n
v =)~y =) e [T =T v

i=1 i=1
for some constants a; > 0.
Comment: Vice versa,
e for each set of values a; >0, ..., o, > 0,

e the above formulas define a monotonic scale-invariant
continuous pre-ordering relation on (R™)".




35. Practical Conclusion

e Situation:

— we need to select an alternative;
— each alternative is characterized by characteristics
Y1y---3Yn-

e Traditional approach:

— we assign the weights w; to different characteristics;

— we select the alternative with the largest value of
n
i=1

o New result: it is l;,)letter to select an alternative with the

largest value of [] y;”.
i=1

e Fquivalent reformulation: select an alternative with

the largest value of > w; - In(y;).
i=1




36. Multi-Agent Cooperative Decision Making

e How to describe preferences: for each participant P,

we can determine the utility wu;; o ui(A;) of all A;.

e (Question: how to transform these utilities into a rea-
sonable group decision rule?

e Solution: was provided by another future Nobelist John
Nash.

e Nash’s assumptions:

— symmetry,
— independence from irrelevant alternatives, and

— scale invariance — under replacing function wu;(A)
with an equivalent function a - u;(A),




37. Nash’s Bargaining Solution (cont-d)

e Nash’s assumptions (reminder):

— symmetry,
— independence from irrelevant alternatives, and

— scale invariance.
o Nash’s result:

— the only group decision rule satisfying all these as-
sumptions

— is selecting an alternative A for which the product

[T ui(A) is the largest possible.
i=1

e Comment. the utility functions must be “scaled” s.t. the
“status quo” situation A has utility 0:

wi(A) = ui(A) E u(A) — w (A0,




38. Multi-Agent Decision Making under Interval
Uncertainty

e Reminder: if we set utility of status quo to 0, then we
select an alternative A that maximizes

u(A) = H u;(A).

e Case of interval uncertainty: we only know intervals

[u;(A), w(A)].

e First idea: find all Ay for which u(Ay) > mjxg(A),

where

. n :
e Second idea: maximize u*1™(A) o [T w;"™(A).

i=1
e Interesting aspect: when we have a conflict situation
(e.g., in security games).




39. Beyond Optimization

e Traditional interval computations:
— we know the intervals X1, ..., X,, containing z1, . .., x,;
— we know that a quantity z dependson z = (x1, ..., z,):
2= f(x1,...,2,);

— we want to find the range Z of possible values of z:

Z = |min f(z), max f(z)| .

e Control situations:

— the value z = f(x,u) also depends on the control
variables v = (u1, ..., Un);

— we want to find Z for which, for every x; € X;, we
can get z € Z by selecting appropriate u; € U;:

Ve Ju(z = f(z,u) € Z).




40. Reformulation in Logical Terms — of Modal
Intervals
e Reminder: we want Vzey Juey (f(x,u) € Z).
e There is a logical difference between intervals X and U.
e The property f(x,u) € Z must hold
— for all possible values x; € X;, but

— for some values u; € Uj.

e We can thus consider pairs of intervals and quantifiers
(modal intervals):

— each original interval X; is a pair (X;,V), while
— controlled interval is a pair (U;, 3).

e We can treat the resulting interval Z as the range de-
fined over modal intervals:

Z = f((X,V), ... . (Xp, V), (U1, 3), ..., (Ui, ).




41. Even Further Beyond Optimization

e In more complex situations, we need to go beyond con-
trol.

e For example, in the presence of an adversary, we want
to make a decision x such that:
— for every possible reaction y of an adversary,
— we will be able to make a next decision z’ (depend-
ing on y)
— so that after every possible next decision vy’ of an
adversary,

— the resulting state s(x,y,2’,y") will be in the de-
sired set:

Vy 32"y (s(z,y,2',y) € S).

e In this case, we arrive at general Shary’s classes.
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43. Extension of Interval Arithmetic to Proba-
bilistic Case: Successes

e General solution: parse to elementary operations +,
—, -, 1/x, max, min.

e Explicit formulas for arithmetic operations are known:

— for intervals,
— for p-boxes F(z) = [F(x), F(z)],

— for intervals + st moments E; & Elz;]:

X1, El

X2aE2
— 1 f yE

XTl) E’I’L




44. Extension of Interval Arithmetic to Proba-
bilistic Case: Successes (cont-d)

e Fasy cases: +, —, product of independent x;.

e Fxample of a non-trivial case: multiplication
Yy = x1 - T9, when we have no info about correlation.

e Solution for this case: for p; dof (B; —z;) /(T — x;), we

get:
o £ = max(p1+p2—1,0)-T1-Tot+min(py, 1 —p2)-T1-29+
min(1 —py, pe) -z, - To +max(l — p; — pa,0) - 2, - Xy;
o £/ =min(py,pe) - T1 - To + max(p; — p2,0) - Ty - To+
max(p2 — P1, 0) "Xy T +min(1 —p1, 1 _P2) c Xy - Xy,




45. Extension of Interval Arithmetic to Proba-
bilistic Case: Challenges

e intervals + 2nd moments:

X17E1)V1
X27E2)V2

f lv.EV

Xp, En, Vi

e moments + p-boxes; e.g.:

El, Fl(ﬂf)
EQ, FQ(I)

f | B F(x

E,, F,(x)




46. Case Study: Bioinformatics

e Practical problem: find genetic difference between can-
cer cells and healthy cells.

e [deal case: we directly measure concentration c of the
gene in cancer cells and h in healthy cells.

e In reality: difficult to separate.

e Solution: we measure y; ~ x; - c+ (1 — x;) - h, where z;
is the percentage of cancer cells in ¢-th sample.

e Fquivalent form: a - x; + h = y;, where a e h




47. Case Study: Bioinformatics (cont-d)

o [f we know x; exactly: Least Squares Method

= : C(x,y)
o 2 _ ,
;(a r; +h—y) — rzl,lhn, hence a V@) and
h=FE(y) —a- E(x), where E(x sz,
1 n
V(r) = 3 (- B@)

i=1

Cloy) = — Do~ B@) - (o~ B()

e Interval uncertainty: experts manually count z;, and
only provide interval bounds x;, e.g., z; € [0.7,0.8].

e Problem: find the range of a and h corresponding to
all possible values z; € [z;, T;].




48. Extension of Interval Arithmetic to Proba-
bilistic Case: General Problem

e General problem:
— we know intervals x1 = [z, 7], ..., X, = [Z,,, Tn),

1 n
— compute the range of F(z) = — in, population
n

1=1
n

1
i V==Y (z;— E(x))* etc.
variance P (x (x))*, etc
e Difficulty: NP-hard even for variance.

o Known:

— efficient algorithms for V/,
— efficient algorithms for V and C(x, y) for reasonable
situations.

e Bioinformatics case: find intervals for C'(z,y) and for

V(z) and divide.




49. Proof of Symmetry Result: Part 1

e Due to scale-invariance, for every yi, ..., Yn, Yy, -- -,
Y., we can take \; = — and conclude that
Yi
no Y
(Yys s yn) ~ (Y1, yn) & (—,...,—n> ~ (1,...,1).
Y1 Yn

e Thus, to describe the equivalence relation ~, it is suf-
ficient to describe {z = (21,...,2,) 1 2~ (1,..., )}

e Similarly,

/ : Yoo Un
(Yoo Un) = (Y1s e syn) & | =0, =) = (1,...,1).
n Yn
e Thus, to describe the ordering relation >, it is sufficient
to describe the set {z = (21,...,2,) : 2> (1,..., 1)}
e Similarly, it is also sufficient to describe the set

{z="(21,...,20): (1,...,1) = z}.




50. Proof of Symmetry Result: Part 2

e To simplify: take logarithms Y; = In(y;), and sets
S ={Z:z=(exp(Z1),...,exp(Zn)) ~ (1,...,1)},
Sy ={Z:z=(exp(Z1),...,exp(Zy)) = (1,...,1)};
S.=A{Z:(,...,1) = z=(exp(Z1),...,exp(Z,))}.

e Since the pre-ordering relation is total, for Z, either
ZeS.orzZeS orZeb..

e Lemma: S. is closed under addition:

e 7/ € S. means (exp(Z1),...,exp(Zy,)) ~ (1,...,1);

e due to scale-invariance, we have

(exp(Z1+721),...) = (exp(Z1)-exp(Z]),...) ~ (exp(Z}),...);

e also, Z' € S. means (exp(Z]),...) ~ (1,...,1);

® since ~ is transitive,

(exp(Zy+20),..)~(1,...)s0 Z+Z' € S..




51. Proof of Symmetry Result: Part 3

e Reminder: the set S. is closed under addition;
e Similarly, S~ and S, are closed under addition.
e Conclusion: for every integer ¢ > 0:

—if ZeS.,thenq-Z € S.;
—ifZe€eS, ,thenqg-Z€5,;
—if Ze S,,theng-Z € 5.

e Thus, if Z € S_ and ¢ € N, then (1/q)-Z € S..
e We can also prove that S. is closed under Z — —Z:
o 7/ =(7Z,...) € S. means (exp(Z1),...) ~(1,...);

e by scale invariance, (1,...) ~ (exp(—21),...), i.e.,
—Z € S..

e Similarly, Z € S, & —Z € 5.
eSoZ€S.=(p/q)-Z € S.;in the limit, x - Z € S..




52. Proof of Symmetry Result: Final Part

e Reminder: S. is closed under addition and multiplica-
tion by a scalar, so it is a linear space.

e Fact: S. cannot have full dimension n, since then all
alternatives will be equivalent to each other.

e Fuact: S. cannot have dimension < n — 1, since then:

— we can select an arbitrary Z € S.;
— connect it w/—Z € S, by a path ~ that avoids S.;
— due to closeness, 3y(t*) in the limit of S, and S;
— thus, 7(t*) € S~ — a contradiction.
n
e Every (n—1)-dim lin. space has the form ) «;-Y; = 0.
i=1

e Thus, Y € S. & > ;- Y; > 0, and

1487

y=y > o -In(yi/y;) >0 [Ty > 1Ty
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