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1. Decision Making: General Need and Traditional
Approach

• To make a decision, we must:

– find out the user’s preference, and

– help the user select an alternative which is the best
– according to these preferences.

• Traditional approach is based on an assumption that
for each two alternatives A′ and A′′, a user can tell:

– whether the first alternative is better for him/her;
we will denote this by A′′ < A′;

– or the second alternative is better; we will denote
this by A′ < A′′;

– or the two given alternatives are of equal value to
the user; we will denote this by A′ = A′′.
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2. The Notion of Utility

• Under the above assumption, we can form a natural
numerical scale for describing preferences.

• Let us select a very bad alternative A0 and a very good
alternative A1.

• Then, most other alternatives are better than A0 but
worse than A1.

• For every prob. p ∈ [0, 1], we can form a lottery L(p)
in which we get A1 w/prob. p and A0 w/prob. 1− p.

• When p = 0, this lottery simply coincides with the
alternative A0: L(0) = A0.

• The larger the probability p of the positive outcome
increases, the better the result:

p′ < p′′ implies L(p′) < L(p′′).
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3. The Notion of Utility (cont-d)

• Finally, for p = 1, the lottery coincides with the alter-
native A1: L(1) = A1.

• Thus, we have a continuous scale of alternatives L(p)
that monotonically goes from L(0) = A0 to L(1) = A1.

• Due to monotonicity, when p increases, we first have
L(p) < A, then we have L(p) > A.

• The threshold value is called the utility of the alterna-
tive A:

u(A)
def
= sup{p : L(p) < A} = inf{p : L(p) > A}.

• Then, for every ε > 0, we have

L(u(A)− ε) < A < L(u(A) + ε).

• We will describe such (almost) equivalence by ≡, i.e.,
we will write that A ≡ L(u(A)).
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4. Fast Iterative Process for Determining u(A)

• Initially: we know the values u = 0 and u = 1 such
that A ≡ L(u(A)) for some u(A) ∈ [u, u].

• What we do: we compute the midpoint umid of the
interval [u, u] and compare A with L(umid).

• Possibilities: A ≤ L(umid) and L(umid) ≤ A.

• Case 1: if A ≤ L(umid), then u(A) ≤ umid, so

u ∈ [u, umid].

• Case 2: if L(umid) ≤ A, then umid ≤ u(A), so

u ∈ [umid, u].

• After each iteration, we decrease the width of the in-
terval [u, u] by half.

• After k iterations, we get an interval of width 2−k which
contains u(A) – i.e., we get u(A) w/accuracy 2−k.
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5. How to Make a Decision Based on Utility Val-
ues

• Suppose that we have found the utilities u(A′), u(A′′),
. . . , of the alternatives A′, A′′, . . .

• Which of these alternatives should we choose?

• By definition of utility, we have:

• A ≡ L(u(A)) for every alternative A, and

• L(p′) < L(p′′) if and only if p′ < p′′.

• We can thus conclude that A′ is preferable to A′′ if and
only if u(A′) > u(A′′).

• In other words, we should always select an alternative
with the largest possible value of utility.

• Interval techniques can help in finding the optimizing
decision.
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6. How to Estimate Utility of an Action

• For each action, we usually know possible outcomes
S1, . . . , Sn.

• We can often estimate the prob. p1, . . . , pn of these out-
comes.

• By definition of utility, each situation Si is equiv. to a
lottery L(u(Si)) in which we get:

• A1 with probability u(Si) and

• A0 with the remaining probability 1− u(Si).

• Thus, the action is equivalent to a complex lottery in
which:

• first, we select one of the situations Si with proba-
bility pi: P (Si) = pi;

• then, depending on Si, we get A1 with probability
P (A1 |Si) = u(Si) and A0 w/probability 1− u(Si).
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7. How to Estimate Utility of an Action (cont-d)

• Reminder:

• first, we select one of the situations Si with proba-
bility pi: P (Si) = pi;

• then, depending on Si, we get A1 with probability
P (A1 |Si) = u(Si) and A0 w/probability 1− u(Si).

• The prob. of getting A1 in this complex lottery is:

P (A1) =
n∑
i=1

P (A1 |Si) · P (Si) =
n∑
i=1

u(Si) · pi.

• In the complex lottery, we get:

• A1 with prob. u =
n∑
i=1

pi · u(Si), and

• A0 w/prob. 1− u.

• So, we should select the action with the largest value
of expected utility u =

∑
pi · u(Si).
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8. Non-Uniqueness of Utility

• The above definition of utility u depends on A0, A1.

• What if we use different alternatives A′0 and A′1?

• Every A is equivalent to a lottery L(u(A)) in which we
get A1 w/prob. u(A) and A0 w/prob. 1− u(A).

• For simplicity, let us assume that A′0 < A0 < A1 < A′1.

• Then, A0 ≡ L′(u′(A0)) and A1 ≡ L′(u′(A1)).

• So, A is equivalent to a complex lottery in which:

1) we select A1 w/prob. u(A) and A0 w/prob. 1−u(A);

2) depending on Ai, we get A′1 w/prob. u′(Ai) and A′0
w/prob. 1− u′(Ai).

• In this complex lottery, we get A′1 with probability
u′(A) = u(A) · (u′(A1)− u′(A0)) + u′(A0).

• So, in general, utility is defined modulo an (increasing)
linear transformation u′ = a · u+ b, with a > 0.
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9. Subjective Probabilities

• In practice, we often do not know the probabilities pi
of different outcomes.

• For each event E, a natural way to estimate its subjec-
tive probability is to fix a prize (e.g., $1) and compare:

– the lottery `E in which we get the fixed prize if the
event E occurs and 0 is it does not occur, with

– a lottery `(p) in which we get the same amount
with probability p.

• Here, similarly to the utility case, we get a value ps(E)
for which, for every ε > 0:

`(ps(E)− ε) < `E < `(ps(E) + ε).

• Then, the utility of an action with possible outcomes

S1, . . . , Sn is equal to u =
n∑
i=1

ps(Ei) · u(Si).
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10. Beyond Traditional Decision Making: Towards
a More Realistic Description

• Previously, we assumed that a user can always decide
which of the two alternatives A′ and A′′ is better:

– either A′ < A′′,

– or A′′ < A′,

– or A′ ≡ A′′.

• In practice, a user is sometimes unable to meaningfully
decide between the two alternatives; denoted A′ ‖ A′′.

• In mathematical terms, this means that the preference
relation:

– is no longer a total (linear) order,

– it can be a partial order.
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11. From Utility to Interval-Valued Utility

• Similarly to the traditional decision making approach:

– we select two alternatives A0 < A1 and

– we compare each alternative A which is better than
A0 and worse than A1 with lotteries L(p).

• Since preference is a partial order, in general:

u(A)
def
= sup{p : L(p) < A} < u(A)

def
= inf{p : L(p) > A}.

• For each alternative A, instead of a single value u(A)
of the utility, we now have an interval [u(A), u(A)] s.t.:

– if p < u(A), then L(p) < A;

– if p > u(A), then A < L(p); and

– if u(A) < p < u(A), then A ‖ L(p).

• We will call this interval the utility of the alternative A.
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12. Interval-Valued Utilities and Interval-Valued
Subjective Probabilities

• To feasibly elicit the values u(A) and u(A), we:

1) starting w/[u, u] = [0, 1], bisect an interval s.t.
L(u) < A < L(u) until we find u0 s.t. A ‖ L(u0);

2) by bisecting an interval [u, u0] for which
L(u) < A ‖ L(u0), we find u(A);

3) by bisecting an interval [u0, u] for which
L(u0) ‖ A < L(u), we find u(A).

• Similarly, when we estimate the probability of an event E:

– we no longer get a single value ps(E);

– we get an interval
[
ps(E), ps(E)

]
of possible values

of probability.

• By using bisection, we can feasibly elicit the values
ps(E) and ps(E).
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13. Decision Making Under Interval Uncertainty

• Situation: for each possible decision d, we know the
interval [u(d), u(d)] of possible values of utility.

• Questions: which decision shall we select?

• Natural idea: select all decisions d0 that may be opti-
mal, i.e., which are optimal for some function

u(d) ∈ [u(d), u(d)].

• Problem: checking all possible functions is not feasible.

• Solution: the above condition is equivalent to an easier-
to-check one:

u(d0) ≥ max
d
u(d).

• Interval computations can help in describing the range
of all such d0.

• Remaining problem: in practice, we would like to select
one decision; which one should be select?
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14. Need for Definite Decision Making

• At first glance: if A′ ‖ A′′, it does not matter whether
we recommend alternative A′ or alternative A′′.

• Let us show that this is not a good recommendation.

• E.g., let A be an alternative about which we know
nothing, i.e., [u(A), u(A)] = [0, 1].

• In this case, A is indistinguishable both from a “good”
lottery L(0.999) and a “bad” lottery L(0.001).

• Suppose that we recommend, to the user, that A is
equivalent both to L(0.999) and to L(0.001).

• Then this user will feel comfortable:

– first, exchanging L(0.999) with A, and

– then, exchanging A with L(0.001).

• So, following our recommendations, the user switches
from a very good alternative to a very bad one.
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15. Need for Definite Decision Making (cont-d)

• The above argument does not depend on the fact that
we assumed complete ignorance about A:

– every time we recommend that the alternative A is
“equivalent” both to L(p) and to L(p′) (p < p′),

– we make the user vulnerable to a similar switch
from a better alternative L(p′) to a worse one L(p).

• Thus, there should be only a single value p for which
A can be reasonably exchanged with L(p).

• In precise terms:

– we start with the utility interval [u(A), u(A)], and

– we need to select a single u(A) for which it is rea-
sonable to exchange A with a lottery L(u).

• How can we find this value u(A)?
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16. Decisions under Interval Uncertainty: Hur-
wicz Optimism-Pessimism Criterion

• Reminder: we need to assign, to each interval [u, u], a
utility value u(u, u) ∈ [u, u].

• History: this problem was first handled in 1951, by the
future Nobelist Leonid Hurwicz.

• Notation: let us denote αH
def
= u(0, 1).

• Reminder: utility is determined modulo a linear trans-
formation u′ = a · u+ b.

• Reasonable to require: the equivalent utility does not
change with re-scaling: for a > 0 and b,

u(a · u− + b, a · u+ + b) = a · u(u−, u+) + b.

• For u− = 0, u+ = 1, a = u− u, and b = u, we get

u(u, u) = αH · (u− u) + u = αH · u+ (1− αH) · u.
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17. Hurwicz Optimism-Pessimism Criterion (cont)

• The expression αH ·u+ (1−αH) ·u is called optimism-
pessimism criterion, because:

– when αH = 1, we make a decision based on the
most optimistic possible values u = u;

– when αH = 0, we make a decision based on the
most pessimistic possible values u = u;

– for intermediate values αH ∈ (0, 1), we take a weighted
average of the optimistic and pessimistic values.

• According to this criterion:

– if we have several alternatives A′, . . . , with interval-
valued utilities [u(A′), u(A′)], . . . ,

– we recommend an alternative A that maximizes

αH · u(A) + (1− αH) · u(A).
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18. Which Value αH Should We Choose? An Ar-
gument in Favor of αH = 0.5

• Let us take an event E about which we know nothing.

• For a lottery L+ in which we get A1 if E and A0 oth-
erwise, the utility interval is [0, 1].

• Thus, the equiv. utility of L+ is αH ·1+(1−αH)·0 = αH .

• For a lottery L− in which we get A0 if E and A1 oth-
erwise, the utility is [0, 1], so equiv. utility is also αH .

• For a complex lottery L in which we select either L+ or
L− with probability 0.5, the equiv. utility is still αH .

• On the other hand, in L, we get A1 with probability
0.5 and A0 with probability 0.5.

• Thus, L = L(0.5) and hence, u(L) = 0.5.

• So, we conclude that αH = 0.5.
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19. Which Action Should We Choose?

• Suppose that an action has n possible outcomes S1, . . . , Sn,
with utilities [u(Si), u(Si)], and probabilities [p

i
, pi].

• We know that each alternative is equivalent to a simple
lottery with utility ui = αH · u(Si) + (1− αH) · u(Si).

• We know that for each i, the i-th event is equivalent
to pi = αH · pi + (1− αH) · p

i
.

• Thus, this action is equivalent to a situation in which
we get utility ui with probability pi.

• The utility of such a situation is equal to
n∑
i=1

pi · ui.

• Thus, the equivalent utility of the original action is
equivalent to

n∑
i=1

(
αH · pi + (1− αH) · p

i

)
·(αH · u(Si) + (1− αH) · u(Si)) .



Decision Making: . . .

The Notion of Utility

From Utility to . . .

Beyond Interval . . .

Multi-Agent . . .

Beyond Optimization

Even Further Beyond . . .

Acknowledgments

Home Page

Title Page

JJ II

J I

Page 21 of 55

Go Back

Full Screen

Close

Quit

20. Observation: the Resulting Decision Depends
on the Level of Detail

• Let us consider a situation in which, with some prob. p,
we gain a utility u, else we get 0.

• The expected utility is p · u+ (1− p) · 0 = p · u.

• Suppose that we only know the intervals [u, u] and [p, p].

• The equivalent utility uk (k for know) is

uk = (αH · p+ (1− αH) · p) · (αH · u+ (1− αH) · u).

• If we only know that utility is from [p · u, p · u], then:

ud = αH · p · u+ (1− αH) · p · u (d for don’t know).

• Here, additional knowledge decreases utility:

ud − uk = αH · (1− αH) · (p− p) · (u− u) > 0.

• (This is maybe what the Book of Ecclesiastes meant
by “For with much wisdom comes much sorrow”?)
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21. Beyond Interval Uncertainty: Partial Info about
Probabilities

• Frequent situation:

– in addition to xi,

– we may also have partial information about the
probabilities of different values xi ∈ xi.

• An exact probability distribution can be described, e.g.,
by its cumulative distribution function

Fi(z) = Prob(xi ≤ z).

• A partial information means that instead of a single
cdf, we have a class F of possible cdfs.

• p-box (Scott Ferson):

– for every z, we know an interval F(z) = [F (z), F (z)];

– we consider all possible distributions for which, for
all z, we have F (z) ∈ F(z).
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22. Describing Partial Info about Probabilities:
Decision Making Viewpoint

• Problem: there are many ways to represent a probabil-
ity distribution.

• Idea: look for an objective.

• Objective: make decisions Ex[u(x, a)]→ max
a

.

• Case 1: smooth u(x).

• Analysis: we have u(x) = u(x0) + (x−x0) ·u′(x0) + . . .

• Conclusion: we must know moments to estimate E[u].

• Case of uncertainty: interval bounds on moments.

• Case 2: threshold-type u(x) (e.g., regulations).

• Conclusion: we need cdf F (x) = Prob(ξ ≤ x).

• Case of uncertainty: p-box [F (x), F (x)].
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23. What if Intervals are Difficult to Elicit

• Problem: in some situations, it is difficult to elicit even
interval-valued utilities.

• Case study: selecting a location for a meteorological
tower.

• What we can use for decision making: in many such
situations, there are reasonable symmetries.

• Good news: in such cases, we can often use symmetries
to select an optimal decision.

• We show: how this works on the case study example.
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24. Case Study

• Objective: select the best location of a sophisticated
multi-sensor meteorological tower.

• Constraints: we have several criteria to satisfy.

• Example: the station should not be located too close
to a road.

• Motivation: the gas flux generated by the cars do not
influence our measurements of atmospheric fluxes.

• Formalization: the distance x1 to the road should be

larger than a threshold t1: x1 > t1, or y1
def
= x1−t1 > 0.

• Example: the inclination x2 at the tower’s location
should be smaller than a threshold t2: x2 < t2.

• Motivation: otherwise, the flux determined by this in-
clination and not by atmospheric processes.
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25. General Case

• In general: we have several differences y1, . . . , yn all of
which have to be non-negative.

• For each of the differences yi, the larger its value, the
better.

• Our problem is a typical setting for multi-criteria op-
timization.

• A most widely used approach to multi-criteria opti-
mization is weighted average, where

– we assign weights w1, . . . , wn > 0 to different crite-
ria yi and

– select an alternative for which the weighted average

w1 · y1 + . . .+ wn · yn

attains the largest possible value.
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26. Limitations of the Weighted Average Approach

• In general: the weighted average approach often leads
to reasonable solutions of the multi-criteria problem.

• In our problem: we have an additional requirement –
that all the values yi must be positive. So:

– when selecting an alternative with the largest pos-
sible value of the weighted average,

– we must only compare solutions with yi > 0.

• We will show: under the requirement yi > 0, the
weighted average approach is not fully satisfactory.

• Conclusion: we need to find a more adequate solution.
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27. Limitations of the Weighted Average Approach:
Details

• The values yi come from measurements, and measure-
ments are never absolutely accurate.

• The results ỹi of the measurements are not exactly
equal to the actual (unknown) values yi.

• If: for some alternative y = (y1, . . . , yn)

– we measure the values yi with higher and higher
accuracy and,

– based on the measurement results ỹi, we conclude
that y is better than some other alternative y′.

• Then: we expect that the actual alternative y is indeed
better than y′ (or at least of the same quality).

• Otherwise, we will not be able to make any meaningful
conclusions based on real-life measurements.
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28. The Above Natural Requirement Is Not Al-
ways Satisfied for Weighted Average

• Simplest case: two criteria y1 and y2, w/weights wi > 0.

• If y1, y2, y
′
1, y
′
2 > 0, and w1 ·y1+w2 ·y2 > w1 ·y′1+w2 ·y′2,

then y = (y1, y2) � y′ = (y′1, y
′
2).

• If y1 > 0, y2 > 0, and at least one of the values y′1 and
y′2 is non-positive, then y = (y1, y2) � y′ = (y′1, y

′
2).

• Let us consider, for every ε > 0, the tuple

y(ε)
def
= (ε, 1 + w1/w2), and y′ = (1, 1).

• In this case, for every ε > 0, we have

w1·y1(ε)+w2·y2(ε) = w1·ε+w2+w2·
w1

w2
= w1·(1+ε)+w2

and w1 · y′1 + w2 · y′2 = w1 + w2, hence y(ε) � y′.

• However, in the limit ε→ 0, we have y(0) =

(
0, 1 +

w1

w2

)
,

with y(0)1 = 0 and thus, y(0) ≺ y′.
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29. Towards a Precise Description

• Each alternative is characterized by a tuple of n posi-
tive values y = (y1, . . . , yn).

• Thus, the set of all alternatives is the set (R+)n of all
the tuples of positive numbers.

• For each two alternatives y and y′, we want to tell
whether

– y is better than y′ (we will denote it by y � y′ or
y′ ≺ y),

– or y′ is better than y (y′ � y),

– or y and y′ are equally good (y′ ∼ y).

• Natural requirement: if y is better than y′ and y′ is
better than y′′, then y is better than y′′.

• The relation � must be transitive.
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30. Towards a Precise Description (cont-d)

• Reminder: the relation � must be transitive.

• Similarly, the relation∼must be transitive, symmetric,
and reflexive (y ∼ y), i.e., be an equivalence relation.

• An alternative description: a transitive pre-ordering
relation a � b⇔ (a � b ∨ a ∼ b) s.t. a � b ∨ b � a.

• Then, a ∼ b⇔ (a � b) & (b � a), and

a � b⇔ (a � b) & (b 6� a).

• Additional requirement:

– if each criterion is better,

– then the alternative is better as well.

• Formalization: if yi > y′i for all i, then y � y′.
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31. Scale Invariance: Motivation

• Fact: quantities yi describe completely different phys-
ical notions, measured in completely different units.

• Examples: wind velocities measured in m/s, km/h,
mi/h; elevations in m, km, ft.

• Each of these quantities can be described in many dif-
ferent units.

• A priori, we do not know which units match each other.

• Units used for measuring different quantities may not
be exactly matched.

• It is reasonable to require that:

– if we simply change the units in which we measure
each of the corresponding n quantities,

– the relations � and ∼ between the alternatives y =
(y1, . . . , yn) and y′ = (y′1, . . . , y

′
n) do not change.
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32. Scale Invariance: Towards a Precise Descrip-
tion

• Situation: we replace:

• a unit in which we measure a certain quantity q

• by a new measuring unit which is λ > 0 times
smaller.

• Result: the numerical values of this quantity increase
by a factor of λ: q → λ · q.
• Example: 1 cm is λ = 100 times smaller than 1 m, so

the length q = 2 becomes λ · q = 2 · 100 = 200 cm.

• Then, scale-invariance means that for all y, y′ ∈ (R+)n

and for all λi > 0, we have

• y = (y1, . . . , yn) � y′ = (y′1, . . . , y
′
n) implies

(λ1 · y1, . . . , λn · yn) � (λ1 · y′1, . . . , λn · y′n),
• y = (y1, . . . , yn) ∼ y′ = (y′1, . . . , y

′
n) implies

(λ1 · y1, . . . , λn · yn) ∼ (λ1 · y′1, . . . , λn · y′n).
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33. Formal Description

• By a total pre-ordering relation on a set Y , we mean

– a pair of a transitive relation � and an equivalence
relation ∼ for which,

– for every y, y′ ∈ Y , exactly one of the following
relations hold: y � y′, y′ � y, or y ∼ y′.

• We say that a total pre-ordering is non-trivial if there
exist y and y′ for which y � y′.

• We say that a total pre-ordering relation on (R+)n is:

– monotonic if y′i > yi for all i implies y′ � y;

– continuous if

∗ whenever we have a sequence y(k) of tuples for
which y(k) � y′ for some tuple y′, and

∗ the sequence y(k) tends to a limit y,

∗ then y � y′.
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34. Main Result

Theorem. Every non-trivial monotonic scale-inv. contin-
uous total pre-ordering relation on (R+)n has the form:

y′ = (y′1, . . . , y
′
n) � y = (y1, . . . , yn)⇔

n∏
i=1

(y′i)
αi >

n∏
i=1

yαi

i ;

y′ = (y′1, . . . , y
′
n) ∼ y = (y1, . . . , yn)⇔

n∏
i=1

(y′i)
αi =

n∏
i=1

yαi

i ,

for some constants αi > 0.

Comment: Vice versa,

• for each set of values α1 > 0, . . . , αn > 0,

• the above formulas define a monotonic scale-invariant
continuous pre-ordering relation on (R+)n.



Decision Making: . . .

The Notion of Utility

From Utility to . . .

Beyond Interval . . .

Multi-Agent . . .

Beyond Optimization

Even Further Beyond . . .

Acknowledgments

Home Page

Title Page

JJ II

J I

Page 36 of 55

Go Back

Full Screen

Close

Quit

35. Practical Conclusion

• Situation:

– we need to select an alternative;

– each alternative is characterized by characteristics
y1, . . . , yn.

• Traditional approach:

– we assign the weights wi to different characteristics;

– we select the alternative with the largest value of
n∑
i=1

wi · yi.

• New result: it is better to select an alternative with the

largest value of
n∏
i=1

ywi

i .

• Equivalent reformulation: select an alternative with

the largest value of
n∑
i=1

wi · ln(yi).
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36. Multi-Agent Cooperative Decision Making

• How to describe preferences: for each participant Pi,

we can determine the utility uij
def
= ui(Aj) of all Aj.

• Question: how to transform these utilities into a rea-
sonable group decision rule?

• Solution: was provided by another future Nobelist John
Nash.

• Nash’s assumptions:

– symmetry,

– independence from irrelevant alternatives, and

– scale invariance – under replacing function ui(A)
with an equivalent function a · ui(A),
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37. Nash’s Bargaining Solution (cont-d)

• Nash’s assumptions (reminder):

– symmetry,

– independence from irrelevant alternatives, and

– scale invariance.

• Nash’s result:

– the only group decision rule satisfying all these as-
sumptions

– is selecting an alternative A for which the product
n∏
i=1

ui(A) is the largest possible.

• Comment. the utility functions must be “scaled” s.t. the
“status quo” situation A(0) has utility 0:

ui(A)→ u′i(A)
def
= ui(A)− ui(A(0)).
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38. Multi-Agent Decision Making under Interval
Uncertainty

• Reminder: if we set utility of status quo to 0, then we
select an alternative A that maximizes

u(A) =
n∏
i=1

ui(A).

• Case of interval uncertainty: we only know intervals
[ui(A), ui(A)].

• First idea: find all A0 for which u(A0) ≥ max
A

u(A),

where

[u(A), u(A)]
def
=

n∏
i=1

[ui(A), ui(A)].

• Second idea: maximize uequiv(A)
def
=

n∏
i=1

uequivi (A).

• Interesting aspect: when we have a conflict situation
(e.g., in security games).
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39. Beyond Optimization

• Traditional interval computations:

– we know the intervalsX1, . . . , Xn containing x1, . . . , xn;

– we know that a quantity z depends on x = (x1, . . . , xn):

z = f(x1, . . . , xn);

– we want to find the range Z of possible values of z:

Z =

[
min
x∈X

f(x),max
x∈X

f(x)

]
.

• Control situations:

– the value z = f(x, u) also depends on the control
variables u = (u1, . . . , um);

– we want to find Z for which, for every xi ∈ Xi, we
can get z ∈ Z by selecting appropriate uj ∈ Uj:

∀x∃u (z = f(x, u) ∈ Z).
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40. Reformulation in Logical Terms – of Modal
Intervals

• Reminder: we want ∀x∈X ∃u∈U (f(x, u) ∈ Z).

• There is a logical difference between intervals X and U .

• The property f(x, u) ∈ Z must hold

– for all possible values xi ∈ Xi, but

– for some values uj ∈ Uj.

• We can thus consider pairs of intervals and quantifiers
(modal intervals):

– each original interval Xi is a pair 〈Xi,∀〉, while

– controlled interval is a pair 〈Uj,∃〉.

• We can treat the resulting interval Z as the range de-
fined over modal intervals:

Z = f(〈X1,∀〉, . . . , 〈Xn,∀〉, 〈U1,∃〉, . . . , 〈Um,∃〉).
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41. Even Further Beyond Optimization

• In more complex situations, we need to go beyond con-
trol.

• For example, in the presence of an adversary, we want
to make a decision x such that:

– for every possible reaction y of an adversary,

– we will be able to make a next decision x′ (depend-
ing on y)

– so that after every possible next decision y′ of an
adversary,

– the resulting state s(x, y, x′, y′) will be in the de-
sired set:

∀y ∃x′ ∀y′ (s(x, y, x′, y′) ∈ S).

• In this case, we arrive at general Shary’s classes.



Decision Making: . . .

The Notion of Utility

From Utility to . . .

Beyond Interval . . .

Multi-Agent . . .

Beyond Optimization

Even Further Beyond . . .

Acknowledgments

Home Page

Title Page

JJ II

J I

Page 43 of 55

Go Back

Full Screen

Close

Quit

42. Acknowledgments

This work was supported in part:

• by the National Science Foundation grants HRD-0734825,
HRD-1242122, and DUE-0926721, and

• by Grant 1 T36 GM078000-01 from the National Insti-
tutes of Health.



Decision Making: . . .

The Notion of Utility

From Utility to . . .

Beyond Interval . . .

Multi-Agent . . .

Beyond Optimization

Even Further Beyond . . .

Acknowledgments

Home Page

Title Page

JJ II

J I

Page 44 of 55

Go Back

Full Screen

Close

Quit

43. Extension of Interval Arithmetic to Proba-
bilistic Case: Successes

• General solution: parse to elementary operations +,
−, ·, 1/x, max, min.

• Explicit formulas for arithmetic operations are known:

– for intervals,

– for p-boxes F(x) = [F (x), F (x)],

– for intervals + 1st moments Ei
def
= E[xi]:

-

· · ·
-

-

xn,En

x2,E2

x1,E1

-y,Ef
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44. Extension of Interval Arithmetic to Proba-
bilistic Case: Successes (cont-d)

• Easy cases: +, −, product of independent xi.

• Example of a non-trivial case: multiplication
y = x1 · x2, when we have no info about correlation.

• Solution for this case: for pi
def
= (Ei − xi)/(xi − xi), we

get:

• E = max(p1+p2−1, 0)·x1·x2+min(p1, 1−p2)·x1·x2+
min(1− p1, p2) ·x1 ·x2 + max(1− p1− p2, 0) ·x1 ·x2;
• E = min(p1, p2) · x1 · x2 + max(p1 − p2, 0) · x1 · x2+

max(p2− p1, 0) ·x1 ·x2 + min(1− p1, 1− p2) ·x1 ·x2.
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45. Extension of Interval Arithmetic to Proba-
bilistic Case: Challenges

• intervals + 2nd moments:

-

· · ·
-

-

xn,En,Vn

x2,E2,V2

x1,E1,V1

-y,E,Vf

• moments + p-boxes; e.g.:

-

· · ·
-

-

En,Fn(x)

E2,F2(x)

E1,F1(x)

-E,F(x)f
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46. Case Study: Bioinformatics

• Practical problem: find genetic difference between can-
cer cells and healthy cells.

• Ideal case: we directly measure concentration c of the
gene in cancer cells and h in healthy cells.

• In reality: difficult to separate.

• Solution: we measure yi ≈ xi · c+ (1− xi) · h, where xi
is the percentage of cancer cells in i-th sample.

• Equivalent form: a · xi + h ≈ yi, where a
def
= c− h.
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47. Case Study: Bioinformatics (cont-d)

• If we know xi exactly: Least Squares Method
n∑
i=1

(a · xi + h − yi)
2 → min

a,h
, hence a =

C(x, y)

V (x)
and

h = E(y)− a · E(x), where E(x) =
1

n
·

n∑
i=1

xi,

V (x) =
1

n− 1
·

n∑
i=1

(xi − E(x))2,

C(x, y) =
1

n− 1
·

n∑
i=1

(xi − E(x)) · (yi − E(y)).

• Interval uncertainty: experts manually count xi, and
only provide interval bounds xi, e.g., xi ∈ [0.7, 0.8].

• Problem: find the range of a and h corresponding to
all possible values xi ∈ [xi, xi].
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48. Extension of Interval Arithmetic to Proba-
bilistic Case: General Problem

• General problem:

– we know intervals x1 = [x1, x1], . . . , xn = [xn, xn],

– compute the range of E(x) =
1

n

n∑
i=1

xi, population

variance V =
1

n

n∑
i=1

(xi − E(x))2, etc.

• Difficulty: NP-hard even for variance.

• Known:

– efficient algorithms for V ,

– efficient algorithms for V and C(x, y) for reasonable
situations.

• Bioinformatics case: find intervals for C(x, y) and for
V (x) and divide.
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49. Proof of Symmetry Result: Part 1

• Due to scale-invariance, for every y1, . . . , yn, y
′
1, . . . ,

y′n, we can take λi =
1

yi
and conclude that

(y′1, . . . , y
′
n) ∼ (y1, . . . , yn)⇔

(
y′1
y1
, . . . ,

y′n
yn

)
∼ (1, . . . , 1).

• Thus, to describe the equivalence relation ∼, it is suf-
ficient to describe {z = (z1, . . . , zn) : z ∼ (1, . . . , 1)}.
• Similarly,

(y′1, . . . , y
′
n) � (y1, . . . , yn)⇔

(
y′1
y1
, . . . ,

y′n
yn

)
� (1, . . . , 1).

• Thus, to describe the ordering relation�, it is sufficient
to describe the set {z = (z1, . . . , zn) : z � (1, . . . , 1)}.
• Similarly, it is also sufficient to describe the set

{z = (z1, . . . , zn) : (1, . . . , 1) � z}.



Decision Making: . . .

The Notion of Utility

From Utility to . . .

Beyond Interval . . .

Multi-Agent . . .

Beyond Optimization

Even Further Beyond . . .

Acknowledgments

Home Page

Title Page

JJ II

J I

Page 51 of 55

Go Back

Full Screen

Close

Quit

50. Proof of Symmetry Result: Part 2

• To simplify: take logarithms Yi = ln(yi), and sets

S∼ = {Z : z = (exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1)},
S� = {Z : z = (exp(Z1), . . . , exp(Zn)) � (1, . . . , 1)};
S≺ = {Z : (1, . . . , 1) � z = (exp(Z1), . . . , exp(Zn))}.

• Since the pre-ordering relation is total, for Z, either
Z ∈ S∼ or Z ∈ S� or Z ∈ S≺.

• Lemma: S∼ is closed under addition:

• Z ∈ S∼ means (exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1);

• due to scale-invariance, we have

(exp(Z1+Z
′
1), . . .) = (exp(Z1)·exp(Z ′1), . . .) ∼ (exp(Z ′1), . . .);

• also, Z ′ ∈ S∼ means (exp(Z ′1), . . .) ∼ (1, . . . , 1);

• since ∼ is transitive,

(exp(Z1 + Z ′1), . . .) ∼ (1, . . .) so Z + Z ′ ∈ S∼.
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51. Proof of Symmetry Result: Part 3

• Reminder: the set S∼ is closed under addition;

• Similarly, S≺ and S� are closed under addition.

• Conclusion: for every integer q > 0:

– if Z ∈ S∼, then q · Z ∈ S∼;

– if Z ∈ S�, then q · Z ∈ S�;

– if Z ∈ S≺, then q · Z ∈ S≺.

• Thus, if Z ∈ S∼ and q ∈ N , then (1/q) · Z ∈ S∼.

• We can also prove that S∼ is closed under Z → −Z:

• Z = (Z1, . . .) ∈ S∼ means (exp(Z1), . . .) ∼ (1, . . .);

• by scale invariance, (1, . . .) ∼ (exp(−Z1), . . .), i.e.,
−Z ∈ S∼.

• Similarly, Z ∈ S� ⇔ −Z ∈ S≺.

• So Z ∈ S∼ ⇒ (p/q) · Z ∈ S∼; in the limit, x · Z ∈ S∼.
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52. Proof of Symmetry Result: Final Part

• Reminder: S∼ is closed under addition and multiplica-
tion by a scalar, so it is a linear space.

• Fact: S∼ cannot have full dimension n, since then all
alternatives will be equivalent to each other.

• Fact: S∼ cannot have dimension < n− 1, since then:

– we can select an arbitrary Z ∈ S≺;

– connect it w/−Z ∈ S� by a path γ that avoids S∼;

– due to closeness, ∃γ(t∗) in the limit of S� and S≺;

– thus, γ(t∗) ∈ S∼ – a contradiction.

• Every (n−1)-dim lin. space has the form
n∑
i=1

αi ·Yi = 0.

• Thus, Y ∈ S� ⇔
∑
αi · Yi > 0, and

y � y′ ⇔
∑
αi · ln(yi/y

′
i) > 0⇔

∏
yαi

i >
∏
y′i
αi.
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