Excluding regions using Sobol sequences in an interval branch-andprune method

Bartłomiej Jacek Kubica

Institute of Control and Computation Engineering Warsaw University of Technology

> SCAN 2012 Novosibirsk

Background

- Interval methods provide us several powerful tools for solving nonlinear systems, e.g.:
 - various kinds of interval Newton operator,
 - various consistency operators,

— ...

- other constraint propagation/satisfaction tools,
- Question: What is crucial for the efficiency (or its lack) of an interval method for solving a specific problem?

Background

- Interval methods provide us several powerful tools for solving nonlinear systems, e.g.:
 - various kinds of interval Newton operator,
 - various consistency operators,

- other constraint propagation/satisfaction tools,
- Question: What is crucial for the efficiency (or its lack) of an interval method for solving a specific problem?
 - Answer: developing a proper heuristic for choosing, parameterizing and arranging adequate tools to process specific data.

Considered algorithm

- We try to solve a system of nonlinear equations.
- Focus on:
 - Tools targeted for underdetermined systems (more variables than equations).
 - Multithreaded safety.
- Used tools:
 - Branch-and-prune schema.
 - Interval Newton operators (switching between two versions: Ncmp and GS).
 - Shared-memory parallelization using Intel TBB (Threading Building Blocks).
- Advanced heuristics:
 - Switching Newton operators.
 - Choosing the component for bisection.

Previous papers

- B. J. Kubica, Interval methods for solving underdetermined nonlinear equations systems, SCAN 2008 Proceedings, Reliable Computing, Vol. 15, pp. 207 – 217 (2011).
- B. J. Kubica, *Performance inversion of interval Newton narrowing operators*, KAEiOG 2009 Proceedings, Zeszyty Naukowe PW. Elektronika, Vol. 169, pp. 111 119 (2009).
- B. J. Kubica, Shared-memory parallelization of an interval equations systems solver – comparison of tools, KAEiOG 2009 Proceedings, ibidem, pp. 121 – 128.
- B. J. Kubica, *Intel TBB as a tool for parallelization of an interval solver of nonlinear equations systems*, ICCE WUT technical report no 09-02, 2010.
- B. J. Kubica, *Tuning the multithreaded interval method for* solving underdetermined systems of nonlinear equations, PPAM 2011 Proceedings, LNCS, Vol. 7204, pp. 467 – 476 (2012).

The idea for improvement

- We are solving the equations system: $(f_1(x), ..., f_m(x))^T = 0$
- The Newton step (a basic tool for equations systems) is time consuming.
- The use of this tool should concentrate on regions around the solution manifold.
- Other regions, i.e., regions where f_i(x)>ε or f_i(x)<-ε (for some i) can (and should) be deleted earlier – by some cheaper test, if possible.

What tools can be used?

- Solving tolerance problems: $f_i(x) \in [\varepsilon, +\infty]$, $f_i(x) \in [-\infty, -\varepsilon]$.
 - Linear methods of Shary, Sharaya, Rohn...
 - Nonlinear?
- Epsilon-inflation.
- Initial choice of "seeds" of exclusion regions:
 - Random.
 - Deterministic.

Shary's method for the linear tolerance problem

- Consider the tolerable solution set (TSS) of the linear interval system: A x = b.
- We have a point *t*, from the interior of the TSS.
- Then, the following set is contained in TSS:
 U = t + r e, where:

$$e = ([-1,1], \dots, [-1,1])^{T},$$

$$r = \min_{1 \le i \le m} \min_{A \in vert A} \frac{\operatorname{rad} b_{i} - \left| \operatorname{mid} b_{i} - \sum_{j=1}^{n} a_{ij} t_{j} \right|}{\sum_{j=1}^{n} \left| a_{ij} \right|}$$

Adaptation of Shary's method

... which in our case has to be modified to:

$$r = \frac{\left|\tilde{b}_{i} - \sum_{j=1}^{n} a_{ij} t_{j}\right|}{\sum_{j=1}^{n} \left|a_{ij}\right|}, \text{ where } \tilde{b}_{i} = \underline{b}_{i} \text{ or } \tilde{b}_{i} = \overline{b}_{i}$$

And for our case it results in:

$$r = \frac{|f_i(t)| - \varepsilon}{\sum_{j=1}^n |a_{ij}|}.$$

Sobol sequences

- An example of low-discrepancy sequences.
- Proposed in 1967.
- Efficient algorithms for generation: Gray code, by I. A. Antonov and V. M. Saleev.
- Efficient and convenient free and open source implementations, e.g., the one of Stephen Joe and Frances Y. Kuo: http://web.maths.unsw.edu.au/~fkuo/sobol.

Илья Меерович Соболь

Random (pseudo-random) sequences vs Sobol sequences

A Sobol sequence in 2D

A pseudo-random sequence in 2D

(pictures from the Wikipedia article on Sobol sequences)

Details

- For higher dimensions Sobol sequences require a large number of points to fill the space densely.
- But we do not need to fill the space, just to plant seeds in many different places.
- In our experiments the number of chosen points equal to *n* (the number of variables) performed the best.
 - At least usually.
 - There were exceptions to it.
- Sobol sequences performed much better than pseudorandom ones:
 - Better speedups.
 - More predictable behavior.

Details

- So, we propose the following "initial exclusion phase" for the branch-and-prune algorithm.
- Using the Sobol (or other) sequence, we chose *n* points from within the considered domain.
- We compute the value of one of the functions $f_i(x)$ at the chosen point $x^{(k)}$.
- If $f_i(x^{(k)}) \in [-\varepsilon, \varepsilon]$, then the point is ignored.
- The linear tolerance problem (using Shary's method) is solved for a problem $f_i(x) \in [\varepsilon, \infty]$ or $f_i(x) \in [-\infty, -\varepsilon]$, linearized around $x^{(k)}$.
- Optionally, we expand the computed region, using epsilon-inflation.

Details

- Then, the computed regions are removed from the problem domain, by a well-known procedure to compute the complement of a box (or set of boxes).
- The preprocessing phase can be parallelized easily (we use **tbb::parallel_for** for this purpose).
- Yet, the parallelization seems irrelevant as its time can be neglected with respect to the overall computation time.
- Preliminary results: B. J. Kubica, *Exclusion* regions in the interval solver of underdetermined nonlinear systems, ICCE internal report 12-01.

Implementation & experiments

- Environment:
 - 16 cores: 8 dual core AMD Opterons 8218, 2.6 GHz.
 - 8 threads used actually.
 - Fedora Linux 15.
 - Linux kernel 2.6.43.8.
 - Glibc 2.14.
 - GCC 4.6.3.
- Used libraries:
 - C-XSC 2.5.3.
 - TBB 4.0 update 5.
 - OpenBLAS 0.2.2.
 - Joe & Kuo Sobol sequence generator.

Test problems

Hippopede – 2 equations in 3 variables:

$$\begin{aligned} x_1^2 + x_2^2 - x_3 &= 0, \\ x_2^2 + x_3^2 - 1.1 x_3 &= 0, \\ x_1 &\in [-1, 5, 1, 5], \quad x_2 &\in [-1, 1], \quad x_3 &\in [0, 4]. \end{aligned}$$

Broyden -N equations in N variables:

$$\begin{split} &x_i \cdot (2+5 \, x_i^2) + 1 - \sum_{j \in J_i} x_j \cdot (1+x_j) = 0, \quad j = 1, \dots, N, \\ &J_i = \left[j | j \neq i \text{ and } \max\{1, i-5\} \le j \le \min\{N, i+1\} \right], \\ &x_i \in [-100, 101], \quad i = 1, \dots, N. \end{split}$$

Test problems

Rheinboldt – 5 equations in 8 variables:

 $-3.933x_1 + 0.107x_2 + 0.126x_3 - 9.99x_5 - 45.83x_7 - 7.64x_8 +$ $-0.727 x_{2} x_{3} + 8.39 x_{3} x_{4} - 684.4 x_{4} x_{5} + 63.5 x_{4} x_{7} = 0,$ $-0.987 x_2 - 22.95 x_4 - 28.37 x_6 + 0.949 x_1 x_3 + 0.173 x_1 x_5 = 0$ $0.002 x_1 - 0.235 x_3 + 5.67 x_5 + 0.921 x_7 - 6.51 x_8 - 0.716 x_1 x_2 +$ $-1.578 x_1 x_4 + 1.132 x_4 x_7 = 0$, $x_1 - x_4 - 0.168 x_6 - x_1 x_2 = 0$, $-x_3 - 0.196 x_5 - 0.0071 x_7 + x_1 x_4 = 0$, $x_i \in |-2,2|, i=1,\ldots,8.$

Computational results

	Hippopede	Rheinboldt	Broyden12	Broyden16
fun evals	1 184 664	213 645 211	23 364 196	7 975 494 792
grad evals	1 361 152	128 791 915	8 625 492	2 139 405 184
bisecs	329 911	12 225 817	337 884	66 082 093
ver.boxes	21 672	486 738	1	1
pos.boxes	149 952	7 684 286	0	0
time (sec.)	< 1	232	21	6911
fun evals	560 712	186 210 881	19 432 059	4 705 422 366
grad evals	639 616	112 809 925	6 722 376	1 257 731 440
bisecs	151 299	10 688 351	264 036	38 905 745
ver.boxes	14 557	425 256	1	1
pos.boxes	63 297	6 828 040	0	0
time (sec.)	<1	202	16	4036

Conclusions

- Using the "initial exclusion phase" seems worthwhile and Sobol sequences perform well for "planting seeds".
- Epsilon-inflation should be used with it.
- Speedups seem to be pretty random, but evident; very impressive for some test problems.
 - 10-30%, typically.
 - Occasionally, no speedup or a minor slowdown. :-(
 - But sometimes, the efficiency doubles!!!
- For some reason, the number of "seeds" equal to the number of variables performs best (but there are exceptions to it).