
Excluding regions using Sobol
sequences in an interval branch-and-

prune method

Bartłomiej Jacek Kubica

Institute of Control and Computation Engineering
Warsaw University of Technology

SCAN 2012
Novosibirsk

Background
● Interval methods provide us several powerful

tools for solving nonlinear systems, e.g.:
– various kinds of interval Newton operator,

– various consistency operators,

– other constraint propagation/satisfaction tools,

– ...

● Question: What is crucial for the efficiency (or
its lack) of an interval method for solving a
specific problem?

Background
● Interval methods provide us several powerful

tools for solving nonlinear systems, e.g.:
– various kinds of interval Newton operator,

– various consistency operators,

– other constraint propagation/satisfaction tools,

– ...

● Question: What is crucial for the efficiency (or
its lack) of an interval method for solving a
specific problem?
– Answer: developing a proper heuristic for choosing,

parameterizing and arranging adequate tools to
process specific data.

Considered algorithm
● We try to solve a system of nonlinear equations.
● Focus on:

– Tools targeted for underdetermined systems (more
variables than equations).

– Multithreaded safety.
● Used tools:

– Branch-and-prune schema.
– Interval Newton operators (switching between two

versions: Ncmp and GS).
– Shared-memory parallelization using Intel TBB

(Threading Building Blocks).
● Advanced heuristics:

– Switching Newton operators.
– Choosing the component for bisection.

Previous papers
● B. J. Kubica, Interval methods for solving underdetermined

nonlinear equations systems, SCAN 2008 Proceedings,
Reliable Computing, Vol. 15, pp. 207 – 217 (2011).

● B. J. Kubica, Performance inversion of interval Newton
narrowing operators, KAEiOG 2009 Proceedings, Zeszyty
Naukowe PW. Elektronika, Vol. 169, pp. 111 – 119 (2009).

● B. J. Kubica, Shared-memory parallelization of an interval
equations systems solver – comparison of tools, KAEiOG
2009 Proceedings, ibidem, pp. 121 – 128.

● B. J. Kubica, Intel TBB as a tool for parallelization of an
interval solver of nonlinear equations systems, ICCE WUT
technical report no 09-02, 2010.

● B. J. Kubica, Tuning the multithreaded interval method for
solving underdetermined systems of nonlinear equations,
PPAM 2011 Proceedings, LNCS, Vol. 7204, pp. 467 – 476
(2012).

The idea for improvement
● We are solving the equations system:

● The Newton step (a basic tool for equations
systems) is time consuming.

● The use of this tool should concentrate on regions
around the solution manifold.

● Other regions, i.e., regions where or
 (for some i) can (and should) be
deleted earlier – by some cheaper test, if possible.

f i (x)>ε
f i (x)<−ε

(f 1(x) ,… , f m (x))
T
=0

What tools can be used?
● Solving tolerance problems:

– Linear – methods of Shary, Sharaya, Rohn...

– Nonlinear?

● Epsilon-inflation.
● Initial choice of “seeds” of exclusion regions:

– Random.

– Deterministic.

f i (x)∈[ε ,+∞] ,
f i (x)∈[−∞ ,−ε] .

Shary's method for the linear
tolerance problem

● Consider the tolerable solution set (TSS) of the
linear interval system: A x = b.

● We have a point t, from the interior of the TSS.
● Then, the following set is contained in TSS:
U = t + r e, where:

e=([−1,1] ,… ,[−1,1])
T ,

r=min1≤i≤m minA∈vert A

rad bi−∣mid bi−∑ j=1

n
aij t j∣

∑ j=1

n

∣a ij ∣
.

Adaptation of Shary's method

… which in our case has to be modified to:

r=
∣b̃i−∑ j=1

n
a ij t j∣

∑ j=1

n

∣aij∣
, where b̃i=b i or b̃i=bi.

r=
∣ f i(t)∣−ε

∑ j=1

n

∣aij∣
.

And for our case it results in:

Sobol sequences
● An example of low-discrepancy

sequences.
● Proposed in 1967.
● Efficient algorithms for

generation: Gray code, by
I. A. Antonov and V. M. Saleev.

● Efficient and convenient free and
open source implementations, e.g.,
the one of Stephen Joe and
Frances Y. Kuo:
http://web.maths.unsw.edu.au/~fkuo/sobol.

Илья Меерович Соболь

http://web.maths.unsw.edu.au/~fkuo/sobol

Random (pseudo-random)
sequences vs Sobol sequences

A pseudorandom sequence in 2D A Sobol sequence in 2D

(pictures from the Wikipedia article on Sobol sequences)

● For higher dimensions Sobol sequences require a large
number of points to fill the space densely.

● But we do not need to fill the space, just to plant seeds
in many different places.

● In our experiments the number of chosen points equal
to n (the number of variables) performed the best.

– At least usually.

– There were exceptions to it.

● Sobol sequences performed much better than pseudo-
random ones:

– Better speedups.

– More predictable behavior.

Details

● So, we propose the following “initial exclusion
phase” for the branch-and-prune algorithm.

● Using the Sobol (or other) sequence, we chose n
points from within the considered domain.

● We compute the value of one of the functions
at the chosen point .

● If
● The linear tolerance problem (using Shary's method)

is solved for a problem or
 , linearized around .

● Optionally, we expand the computed region, using
epsilon-inflation.

Details

f i (x)

f i (x(k))∈[−ε ,ε] , then the point is ignored.

x(k)

f i (x)∈[ε ,∞]
x(k)f i (x)∈[−∞ ,−ε]

● Then, the computed regions are removed from the
problem domain, by a well-known procedure to
compute the complement of a box (or set of
boxes).

● The preprocessing phase can be parallelized easily
(we use tbb::parallel_for for this purpose).

● Yet, the parallelization seems irrelevant as its time
can be neglected with respect to the overall
computation time.

● Preliminary results: B. J. Kubica, Exclusion
regions in the interval solver of underdetermined
nonlinear systems, ICCE internal report 12-01.

Details

Implementation & experiments
● Environment:

– 16 cores: 8 dual core AMD Opterons 8218, 2.6 GHz.
– 8 threads used actually.
– Fedora Linux 15.
– Linux kernel 2.6.43.8.
– Glibc 2.14.
– GCC 4.6.3.

● Used libraries:
– C-XSC 2.5.3.
– TBB 4.0 update 5.
– OpenBLAS 0.2.2.
– Joe & Kuo Sobol sequence generator.

Test problems

x1
2
+x 2

2
− x3=0,

x2
2
+x3

2
−1.1 x3=0,

x1∈[−1,5 , 1,5] , x2 ∈[−1,1] , x3∈[0,4].

Hippopede – 2 equations in 3 variables:

x i⋅(2+5 x i
2
)+1−∑

j∈J i

x j⋅(1+x j)=0, j=1,… ,N ,

J i= { j∣ j≠i and max {1, i−5}≤ j≤min {N , i+1}} ,
x i∈[−100, 101] , i=1,… , N.

Broyden – N equations in N variables:

Test problems

−3.933x1+0.107 x 2+0.126 x3−9.99 x5−45.83 x7−7.64 x8 +

−0.727 x2 x3+8.39 x3 x 4−684.4 x4 x 5+63.5x 4 x7=0,
−0.987 x2−22.95 x4−28.37 x6+0.949 x1 x3+0.173 x1 x5=0,
0.002 x1−0.235 x3+5.67 x5+0.921 x7−6.51 x8−0.716 x1 x 2 +

−1.578 x1 x4+1.132 x4 x7=0,
x1−x 4−0.168 x6− x1 x 2=0,
−x3−0.196 x5−0.0071 x7+ x1 x4=0,
x i∈[−2, 2] , i=1,… ,8.

Rheinboldt – 5 equations in 8 variables:

Computational results
 Hippopede Rheinboldt Broyden12 Broyden16

fun evals 1 184 664 213 645 211 23 364 196 7 975 494 792
grad evals 1 361 152 128 791 915 8 625 492 2 139 405 184
bisecs 329 911 12 225 817 337 884 66 082 093
ver.boxes 21 672 486 738 1 1
pos.boxes 149 952 7 684 286 0 0
time (sec.) < 1 232 21 6911

fun evals 560 712 186 210 881 19 432 059 4 705 422 366
grad evals 639 616 112 809 925 6 722 376 1 257 731 440
bisecs 151 299 10 688 351 264 036 38 905 745
ver.boxes 14 557 425 256 1 1
pos.boxes 63 297 6 828 040 0 0
time (sec.) < 1 202 16 4036

Conclusions
● Using the “initial exclusion phase” seems

worthwhile and Sobol sequences perform well for
“planting seeds”.

● Epsilon-inflation should be used with it.

● Speedups seem to be pretty random, but evident;
very impressive for some test problems.

– 10-30%, typically.

– Occasionally, no speedup or a minor slowdown. :-(

– But sometimes, the efficiency doubles!!!

● For some reason, the number of “seeds” equal to the
number of variables performs best (but there are
exceptions to it).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

