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Background

 Interval methods provide us several powerful
tools for solving nonlinear systems, ¢.g.:

— various kinds of interval Newton operator,
— varlous consistency operators,

— other constraint propagation/satisfaction tools,

* Question: What is crucial for the efficiency (or
its lack) of an interval method for solving a
specific problem?
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* Question: What is crucial for the efficiency (or
its lack) of an interval method for solving a
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— Answer: developing a proper heuristic for choosing,
parameterizing and arranging adequate tools to
process specific data.



Considered algorithm

 We try to solve a system of nonlinear equations.

e Focus on:

— Tools targeted for underdetermined systems (more
variables than equations).

— Multithreaded safety.

e Used tools:

— Branch-and-prune schema.

— Interval Newton operators (switching between two
versions: Ncmp and GS).

— Shared-memory parallelization using Intel TBB
(Threading Building Blocks).
e Advanced heuristics:
— Switching Newton operators.
— Choosing the component for bisection.
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The idea for improvement

 We are solving the equations system:

(fl(x>,...,fm(x))T:O

 The Newton step (a basic tool for equations
systems) 1s time consuming.

e The use of this tool should concentrate on regions
around the solution manifold.

e Other regions, 1.¢., regions where fi(x)>8 or
f.(x)<—¢ (for some i) can (and should) be

l

deleted earlier — by some cheaper test, if possible.



What tools can be used?

» Solving tolerance problems: f.(x)€E[e ,+x],

fl.(x)E:—oo,—g J-

— Linear — methods of Shary, Sharaya, Rohn...

— Nonlinear?
e Epsilon-inflation.
e Initial choice of “seeds” of exclusion regions:

— Random.

— Deterministic.



Shary's method for the linear
tolerance problem

e Consider the tolerable solution set (TSS) of the
linear interval system: 4 x = b.

 We have a point ¢, from the interior of the TSS.

e Then, the following set 1s contained in TSS:
U=1t+re, where:

e=([—1,1],....,[-1,1],
rad bi—|mid bi—zljzl at;
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Adaptation of Shary's method

... which 1n our case has to be modified to:
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Sobol sequences

An example of low-discrepancy
sequences.

Proposed 1n 1967.

Efficient algorithms for

generation: Gray code, by
I. A. Antonov and V. M. Saleev.

Efficient and convenient free and
open source implementations, €.g.,
the one of Stephen Joe and

Frances Y. Kuo:
http://web.maths.unsw.edu.au/~fkuo/sobol.

Wnbst Meeposiy Cobonb


http://web.maths.unsw.edu.au/~fkuo/sobol

Random (pseudo-random)
sequences vs Sobol sequences
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A pseudo-random sequence in 2D
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A Sobol sequence in 2D

(pictures from the Wikipedia article on Sobol sequences)



Detalils

For higher dimensions Sobol sequences require a large
number of points to fill the space densely.

But we do not need to fill the space, just to plant seeds
in many different places.

In our experiments the number of chosen points equal
to n (the number of variables) performed the best.

— At least usually.

— There were exceptions to it.

Sobol sequences performed much better than pseudo-
random ones:

— Better speedups.

— More predictable behavior.



Detalils

* So, we propose the following “initial exclusion
phase” for the branch-and-prune algorithm.

e Using the Sobol (or other) sequence, we chose n
points from within the considered domain.

 We compute the value of one of the functions f,(x)
at the chosen point e

o If fl.(x(k>)6[—e ,€ |, then the point is ignored.

e The linear tolerance problem (using Shary's method)

is solved for a problem f,(x)€[e , o] or

f.(x)€[—o,—¢ ], linearized around P

* Optionally, we expand the computed region, using
epsilon-inflation.



Detalils

e Then, the computed regions are removed from the
problem domain, by a well-known procedure to
compute the complement of a box (or set of
boxes).

e The preprocessing phase can be parallelized easily
(we use tbb: :parallel for for this purpose).

* Yet, the parallelization seems irrelevant as its time
can be neglected with respect to the overall
computation time.

e Preliminary results: B. J. Kubica, Exclusion
regions in the interval solver of underdetermined
nonlinear systems, ICCE 1nternal report 12-01.



Implementation & experiments

 Environment:
— 16 cores: 8 dual core A Opterons 8218, 2.6 GHz.
— & threads used actually.

— Fedora Linux 15.

— Linux kernel 2.6.43.8.
- Glibc 2.14.

- GCC 4.6.3.

e Used libraries:
—E=XS2.5 3
- TBB 4.0 update 5.

— OpenBLAS 0.2.2.
- Joe & Kuo Sobol sequence generator.



Test problems

Hippopede — 2 equations 1n 3 variables:
X;+x5—x,=0,
xo+xi—1.1x,=0,
x,€[—1,5,15], x,€[-1,1], x,€[0,4].

Broyden — N equations in N variables:

xi-(2+5xl.2)+1—zxj-(1+xj)=O, j=1,...,N,
jed.

J.=|jlj#i and max {1,i—5}<j<min (N,i+1}],

et TOOEE =1 N



Test problems

Rheinboldt — 5 equations 1n 8 variables:
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Computational results

Hippopede  Rheinboldt Broydenl12 Broydenl6
fun evals 1184 664 213 645211 23364 196 7975494 792
grad evals 15361152 (128 791915 8 625492 | 2139405 184
bisecs 329911 | 12225817 337 884 66 082 093
ver.boxes 21 672 486 738 1 1
pos.boxes 149 952 7 684 286 0 0
time (sec.) =3 232 2 6911
fun evals 560 712 186 210 881 19432 059 4705422 366
grad evals 639 616 112 809 925 6722376 1257731 440
bisecs 151299 10 688 351 264 036 38 905 745
ver.boxes 14 557 425 256 1 1
pos.boxes 63 297 6 328 040 0 0
time (sec.) =& 202 16 4036




Conclusions

e Using the “initial exclusion phase” seems
worthwhile and Sobol sequences perform well for
“planting seeds”.

* Epsilon-inflation should be used with it.

* Speedups seem to be pretty random, but evident;
very impressive for some test problems.

- 10-30%, typically.
— Occasionally, no speedup or a minor slowdown. :-(

— But sometimes, the efficiency doubles!!!

* For some reason, the number of “seeds” equal to the
number of variables performs best (but there are
exceptions to it).
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