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Game theory
● Consider a situation when n ≥ 2 (rational) agents 

interact with each other, i.e., when one agent's 
action depends essentially on what other agents 
may do.

● Game – a model of disagreement/conflict of 
interests between interacting agents.

● R.Aumann suggested to change “Game theory” 
for “Interactive decision theory”.

● Antagonistic (strictly competitive, constant-sum) 
vs. non-antagonistic (non constant-sum) games.

● Cooperative vs. non-cooperative games.



The strategic (normal) model
 of the game

There are n agents, each of them equipped with
● a set of feasible alternatives X

i 
,

● the utility (for minimization – cost) function q
i

modeling the agent's preference.
● All agents are trying to choose their decision x

i 
 in X

i

 to minimize their cost functions.

qi :X 1×…×Xn→ℝ ,



Solutions of a game
● The point (strategy assignment) that the players 

are going to choose (or we suppose them to do so), 
provided:

➢ assumptions on their rationality,
➢ assumptions on their knowledge,
➢ ...

● Concepts:
➢ Dominant strategy equilibrium.
➢ The Nash equilibrium.
➢ The core of a game (for cooperative games).
➢ ...



Nash equilibrium
Let the game (X

1
,...,X

n
;q

1
,...,q

n
) be given.

Decision                     is a Nash equilibrium  if 
for all i and all x

i
 in X

i

x1
∗ , ... , x n

∗

qi  x1
∗ , ... , x i , ... , x n

∗  ≥ qi  x1
∗ , ... , x i

∗ , ... , xn
∗ .

We remember – the agent wants to minimize his cost function. 
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When we denote

the following, more compact, restatement of the definition
is useful.
Decision                is a Nash equilibrium  if  for all i and
all x

i
 in X

i 
: 

x ∖ i =  x1, ... , x i−1 , x i1 , ... , xn

 x i
∗ , x ∖ i

∗ 

qi  x i , x ∖ i
∗  ≥ qi x i

∗ , x ∖ i
∗  .

We remember – the agent wants to minimize his cost function. 



Nash equilibrium
● To find Nash equilibrium, and especially all 

equilibria, for continuous games is a hard task.
● In the literature one can find a few approaches 

based on different theoretical frameworks:
➢ minimization of function defined by Nikaidô and 

Isoda,
➢ solving necessary differential optimality conditions 

(Fermat's theorem),
➢ best replay dynamic (myopic behavior, индикаторнoе 

поведение), 
➢ our approach, using interval methods,
➢ ...



Our interval algorithm
● Previous papers:

➢ B. J. Kubica and A. Woźniak, “An interval method 
for seeking the Nash equilibria of non-cooperative 
games”, PPAM 2009 Proceedings, LNCS, Vol. 6068, 
pp. 446 – 455 (2010).

➢ B. J. Kubica and A. Woźniak, “Applying an interval 
method for a four agent economy analysis”, PPAM 
2011 Proceedings, LNCS, Vol. 7204, pp. 477 – 483 
(2012).

● Idea: interval methods can be used to solve the 
following system of conditions:

∀ i=1,… , n ∀ x i∈x i⊆ℝk i

q i(x1
∗ ,… , x i −1

∗ , x i , x i +1
∗ ,… , x n

∗
)⩾qi( x1

∗ ,… , x n
∗
)



Our interval algorithm
● The branch-and-bound (b&b) schema.
● Rejection/reduction tools:

– An analog of the monotonicity test.

– The Newton operator used to solve the system of 
necessary conditions for Nash points.

● A “second phase” to delete points that are not 
Nash equilibria, using 0th-order tools.

– No simple approach.

– A few possibilities (e.g., using an interval tree, to 
store cost values of different players for different 
parts of the domain, comparing only selected points, 
etc.).



Necessary conditions
● Well determined (N = ∑

i 
k

i
 equations and total N 

variables).
● The Jacobi matrix is composed of rows of Jacobi 

matrices of systems 

∂ q1x 

∂ x1

=0,
∂ q1 x

∂ x2

=0, ⋯
∂ q1x 

∂ xn

=0,

∂ q2x 

∂ x1

=0,
∂ q2 x 

∂ x2

=0, ⋯
∂ q2x 

∂ xn

=0,

⋮ ⋮ ⋯ ⋮

∂ qnx 

∂ x1

=0,
∂qn x 

∂ x2

=0, ⋯
∂ qnx 

∂ xn

=0.

∇ q ix1,  , xn=0
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The overall algorithm
L = {}; Lsol = {};
// branch-and-bound
enqueue (L, x);
while nonempty(L) do

dequeue (L, x);
narrow (x); // using monot. test and Nash-point necessary conditions
if (x was discarded) then cycle;
if (diam (x) < ε) then enqueue (Lsol, x);
else

bisect (x, x1, x2);   enqueue (L, x2);   x = x1;
end

end while
// Second phase
foreach x in Lsol

if (x cannot contain a Nash equilibrium) then discard x;
end foreach



Parallelization

Initialization

b&b b&bb&b b&b

All threads finished b&b

Second phase Second phase Second phase Second phase

Gather results



The concavity test
● Used for global optimization.
● Also known as “non-convexity test”; both names are 

confusing...
● Essence: check if the objective function cannot be 

convex at any point of the given box (i.e., it is 
concave with respect to at least one of the variables).

● A simple version – check if there is a strictly 
negative element on main diagonal of the Hesse 
matrix.

● Alternatively, we can compute eigenvalues, but that 
is time consuming (and usually inefficient).



The concavity test
● For global optimization the concavity test is not   

very useful (at least, according to our experiments).
– It deletes few boxes.

– The midpoint test (a 0th order tool) would also delete  
these boxes, simply.

● But for the Nash equilibria seeking problem, we     
do not have efficient 0th order tools!
– Hence, the analog of concavity test becomes important.

● For seeking plain Nash points, we consider concavity 
of players' costs wrt their control variables.

● For the refinements, the procedure might be a bit 
different...



Drawbacks of the notion of Nash 
equilibrium

● There can be no Nash equilibrium.
● Also, there can exist many Nash equilibria.

➢ We do not know, which of them the players will 
choose, actually.

● A Nash equilibrium does not have to be Pareto-
optimal.

➢ So, it might be a quite undesirable point.

● Nash equilibrium concept assumes perfect 
rationality of all players and finding it requires 
complete information, often.

● ...



Variants of the Nash equilibrium
● Epsilon-equilibrium – 

– Some games (at least stochastic ones) that do not have Nash 
equilibria have an epsilon-equilibrium, e.g., the matching 
pennies game.

● Strong Nash equilibrium (SNE):
– A Nash equilibrium fulfilling some additional requirement:

qi(x i , x ∖ i
∗

) ≥ qi(x i
∗ , x ∖ i

∗
)−ε .



Variants of the Nash equilibrium
● Epsilon-equilibrium – 

– Some games (at least stochastic ones) that do not have Nash 
equilibria have an epsilon-equilibrium, e.g., the matching 
pennies game.

● Strong Nash equilibrium (SNE):
– A Nash equilibrium fulfilling some additional requirement:

Not only for a single player it is not beneficial to change 
their SNE strategy, but also for each member of every 

conceivable coalition S of players

qi(xi , x ∖ i
∗

) ≥ qi(xi
∗ , x ∖ i

∗
)−ε .

∀ S ∀ i∈S ∀ xS qi( xS , x ∖ S
∗

) ≥ qi(xS
∗ , x ∖ S

∗
).



Inventor of the SNE

Robert John (Yisrael) Aumann
             (born 1930)

In many real-world situations, cooperation 
may be easier to sustain in a long-term 
relationship than in a single encounter. 
Analyzes of short-run games are, thus, 
often too restrictive. 
Robert Aumann was the first to conduct a 
full-fledged formal analysis of so-called 
infinitely repeated games. His research 
identified exactly what outcomes can be 
upheld over time in long-run relations.

From: Prize in Memory of Alfred Nobel
Announcement, 10 October 2005.



Strong Nash equilibriua – comments

● The notion of SNE is very “strong”, indeed – 
SNEs have to be Pareto-optimal.

● Actually, the notion is “too strong” – SNEs rarely 
exist!

● Yet there are some games, for which strong Nash 
equilibria are guaranteed to exist, e.g., some 
population games.

● An obvious weakening: k-equilibrium (k-SNE): 
we consider only coalitions of at most k players.



Computing strong Nash equilibria

● Necessary conditions:
➢ All conditions for ordinary Nash equilibria hold!
➢ And there are additional ones.

● So, the system is overdetermined.
➢ That is the reason (at least one of them) why SNEs 

exist so rarely.
➢ It will not be possible to compute verified results using 

the interval Newton operator.

● What are these necessary conditions, specifically?



Computing strong Nash equilibria

● Necessary conditions:
➢ All conditions for ordinary Nash equilibria hold!
➢ And there are additional ones.

● So, the system is overdetermined.
➢ That is the reason (at least one of them) why SNEs 

exist so rarely.
➢ It will not be possible to compute verified results using 

the interval Newton operator.

● What are these necessary conditions, specifically?

● We assume i-th player controls the variable x
i
; 

extension to the general case is straightforward.



∂ q1( x)

∂ x1

=0,
∂ q2(x )

∂ x2

=0, ⋯,
∂ qn(x )

∂ x n

=0,

Necessary conditions for a 2-SNE

For each pair (i, j) of players (q
i
, q

j
) is Pareto-

optimal with respect to (x
i
, x

j
), which can be 

expressed by the necessary conditions for Pareto-
optimality:

ui
(ij )

⋅
∂ q i( x)

∂ x i

+u j
(ij)

⋅
∂q j(x )

∂ x i

=0,

ui
(ij )

⋅
∂ q i( x)

∂ x j

+u j
(ij)

⋅
∂q j(x )

∂ x j

=0,

ui
(ij )

+u j
(ij )

=1.

∀ i , j i≠ j



Necessary conditions for a 2-SNE
Which results in:
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+u j
(ij )

=1.

And, as       and        cannot be both equal to zero, 
we obtain the condition:

ui
(ij ) u j

(ij )

∂q j(x )

∂ x i

=0  or 
∂ q i(x )

∂ x j

=0 ∀ i , j i≠ j.



Necessary conditions for a 2-SNE

Interpretation: for no pair of players it is possible 
that they mutually reduce each other's cost.

Which results in:

u j
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⋅
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∂ x i

=0,

ui
(ij )

⋅
∂ q i( x)

∂ x j

=0,
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+u j
(ij )

=1.

And, as       and        cannot be both equal to zero, 
we obtain the condition:

ui
(ij ) u j

(ij )

∂q j(x )

∂ x i

=0  or 
∂ q i(x )

∂ x j

=0 ∀ i , j i≠ j.



Solving necessary conditions for a 
2-SNE

● We can solve the condition                                   .

● This would be however less efficient (we loose 
some important information).

● A new monotonicity test (check if zero does not 
belong to at least one of the gradients' 
components of the pair).

● The Newton operator for an alternative of 
equations!
➢ More possible results than for a traditional Newton 

operator (the box can be contracted and split at the 
same time!).

( ∂ q j(x )

∂ x i
)⋅( ∂ q i(x )

∂ x j
)=0



Necessary conditions for a k-SNE

● For k > 2 we get yet more necessary conditions 
ad they are yet more complicated.

● A “full” SNE has to fulfill them all!
● 0th order procedures are yet more complicated – 

none of the pairs of cost functions can be 
dominated!

● Solving these conditions (or their form) will 
not be presented here – the work is in progress.



A simple example
● Player 1 controls variable x

1
, player 2 – x

2
.

● Both objectives are minimized:

q1(x1, x2)= x1
4
−3.75 x1

3
+3.25 x1

2
+ x2

2
+1,

q2( x1, x2)=x2
4−3.75 x 2

3+3.25 x2
2+x1

2+1,
x1, x2∈[−3, 3] .

● The game has a single Nash equilibrium (2, 2), 
but it is not a strong Nash equilibrium.

● The point (0, 0) fulfills the necessary condition 
for a SNE, but it is not a Nash point (players 
benefit from deviating their control from 0 to 2).



A simple example
● The algorithm for Nash points finds three 

points, quickly: (2, 2), (0, 0) and (0, 2).
● The proposed “monotonicity test” for strong 

Nash points discards the point (2, 2), 
efficiently. Other points can be discarded by 
comparing the values of functions q

1
(.), q

2
(.).

● Obviously, for some problems the algorithm 
may be inefficient, but this requires further 
research.



Suggestion the notion of epsilon-
SNE (epsilon-k-SNE)

● We cannot solve an overdetermined system 
precisely, but we can solve it approximately – 
and it is quite easy!
– Minimise a norm (e.g., quadratic or Chebyshev) of 

the vector of all functions.

● Such equilibira may exist more often; 
consequently – be more useful than classical 
SNE.

● Not investigated yet?



Further research

● Considering more sophisticated examples of 
strong Nash equilibria computations and tuning 
our algorithm for these cases.
– In particular, investigating the interval Newton 

operator applied to an alternative of equations.

● Investigating the notion of epsilon-SNE:
– Its theoretical properties.

– Possibilities of finding it numerically.



Conclusions
● Interval methods are well suited to seek 

points that fulfill a certain condition – in 
particular Nash equilibria of a game and its 
various modifications. 

● Here, we proposed an interval algorithm for 
seeking strong Nash equilibria of a 
continuos game.

● The tools to be applied and some 
preliminary results have been presented.

● Some insight on the theory (the notion of 
epsilon-SNE) was considered, also.
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