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I. Experimental process [1]: decomposition of H2O2 on
bronzes; experiments with high accuracy
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Possible models of the experimental process [2− 4]

Polynomial: S(t) = At3 + Bt2 + Ct + D, A > 0.

Single exponent: S(t) = A exp(αt), A > 0, α < 0.
Exponent with a background: S(t) = A exp(αt) + BG,
A > 0, α < 0, BG > 0.
Sophisticated exponent with a background: S(t) = A exp(αt+βt2)+BG,
A > 0, α < 0, β < 0, BG > 0.
Various catalysts (including advanced nano-sized ones) are investigated:
the process curve, values of its parameters, and activity (the process on
the derivative).
Conditions of the experiment: fixed volume and initial concentration of the
standard reactant H2O2; fixed volume and initial concentration of various
catalysts to be tested; the same (standard) environmental conditions of
the experiment (temperature, pressure, etc.); the same (standard) pro-
cedures of measuring the reactant concentration versus the time of the
decomposition reaction.
The measuring procedure is indirect that implies appearance not only
the primary measuring errors, but, also, additional chaotic corruptions in
measured values of the reactant concentration.
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II. Identification of the process parameters

Several topics of interest:
– previous validity analysis of various models of the the process;
– for valid model, finding pointwise estimates of its parameters that could
serve as approximate “trend” values.

The main problem is to construct the set of admissible values of the
process parameters with more subtle description of its structure than by
usual rough outer approximate box-estimation.

Peculiarities of the experimental data to be processed:
– very short sample and relatively short time interval of observation of
the reaction;
– as mentioned above, there are both usual (small) fluctuation error and
possible chaotic component in the summary error of each measurement;
– complete absence of any probabilistic characteristics of both compo-
nents in the error.
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Conditions of uncertainty and model of measurement
corruption

As a result, one should work under conditions of uncertainty. The fol-
lowing practical information about corruptions in measurements could be
reasoned:

– it is possible to show an approximate bound onto the maximal (in
modulus) value of the summary error;

– the model of corrupting each measurement, for example, the most po-
pular is one

sn = S(tn) = S∗(tn) + en, n = 1, N ,
en = eeqpn + χn,
|en| ≤ emax,

where sn is a measurement at the instant tn; S∗(tn) is an unknown true
value to be measured; N is the sample length; en is the summary error
constrained in modulus by the value emax and comprising of the equipment
eeqpn and chaotic χn components.
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Violations of conditions for application of the statistical
approaches [5− 7] lead to serious consequences

The sample is too short.

No information on probability characteristics of the measuring error.

Measuring error contains possible chaotic component, i.e., shifts.

No information on possible dependence of errors between neighbor mea-
surements.

The notions of the “confidence probability” and corresponding “confidence
interval of parameter” lose the sense.

As a result, it becomes problematic to find any intervals of possible param-
eter values and corresponding tube of possible trajectories of the process
under investigation.

Now, it would be very interesting to illustrate these consequences on
practical examples.
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III. Inability of the standard statistical approach.
Polynomial model of the process is invalid
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Inability of the standard statistical approach. Single ex-
ponent model contradicts to accuracy of the experiment
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Exponent with the background asymptote; inability of
the standard statistical approach even with additional
information about exhausting the catalyst
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The most active nano-sized catalyst; sophisticated ex-
ponent; inability of the standard statistical approach
even with information about exhausting the catalyst
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Then, what should be done to overcome the heri-

tage of uncertainty and to construct the desirable

set of the process parameters?

After refusal of the statistical paradigm and pas-

sage to the interval description of the summary

corruption in measurements, the situation changes

crucially and becomes constructive.
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IV. Interval approach [8− 10]; the main notions [11− 13]

A sample {tn, sn}, n = 1, N ;

A model of corruption sn = S∗(tn) + en, n = 1, N , with the interval con-
straint (bound) onto the summary error |en| ≤ emax;

A describing function (dependence) S(t) = f(t, p) with the argument t
and the parameter vector p.

Uncertainty set of each measurement (USM), i.e., the interval sn =
[sn, sn], sn = sn − emax, sn = sn + emax.

Admissible value p of the parameter vector and corresponding admissible
dependence

(
p, f(t, p)

)
: f(tn, p) ∈ sn, for all n = 1, N.

Informational set (INFS) (the set of membership), i.e., the totality of all
values p, for which I(emax, p) =

{
p : f(tn, p) ∈ sn, for all n = 1, N

}
.

Consistent sample: if for the given emax, I(emax, p) 6= ∅, or inconsistent
sample: if I(emax, p) = ∅.
The tube of admissible dependences (TAD), i.e., the totality of all depen-
dences, for which T (t) =

{
f(t, p) : f(tn, p) ∈ sn, for all n = 1, N and p ∈

I(emax, p)
}
.
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Illustration to the notions
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Interval approach, developed “grid–analytical” technolo-
gy [11− 13] with exact description of the INFS sections
1. Transformation [7,11-13] of the original nonlinear (in a general case)
function to one with linear dependence on the parameters to be esti-
mated. For example, in the case under consideration (Model 2):
S(t) = Aexp(αt + βt2) + BG ⇒

(
S(t) − BG

)
= Aexp(αt + βt2) ⇒

Ln
(
S(t)−BG

)
= LnA + αt + βt2 ⇒ Ln

(
S(t)−BG

)
− βt2 = LnA + αt.

2. Introducing the grid {βk, k = 1, K} in β on some possible (by practi-
cal reasons) interval βmin = β, βmax = β. Similarly, introducing the grid
{BGj, j = 1, J} in BG on some possible (by practical reasons) its interval
BGmin = BG, BGmax = BG.
3. As a result, under given value of the bound emax, for the interval sn of
each measurement sn, each node βk, and each node BGj, we obtain the
following system of interval linear double-side inequalities for parameters
LnA and α: LnA + αtn ∈ Ln

(
sn−BGj

)
−βkt2n, n = 1, N , k = 1, K, j = 1, J.

4. Solving the system, the desirable informational set I(emax,LnA, α, β, BG)
is constructed as a collection of its exact cross-sections in the plane
LnA × α:

{
I(emax,LnA, α, βk, {BGj(βk)}

}
for each node k = 1, K, j =

1, J(βk).
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Interval approach, developed “grid–analytical” technolo-
gy [11−13] with exact description of the INFS sections;
another techniques of linearization

For Model 2 (similarly for Model 1), introducing the grid {βk, k = 1, K}
in β on some possible (by practical reasons) interval βmin = β, βmax = β

and, similarly, introducing the grid {αj, j = 1, J} in α on some possible
(by practical reasons) its interval αmin = α, αmax = α, one obtains:

S(t) = Aexp(αt + βt2) + BG ⇒ S(tn) = A exp(αjtn + βkt2n) + BG ⇒
S(tn) = Azn,j,k + BG, where, zn,j,k = exp(αjtn + βkt2n).

Again, under a given value of the bound emax, for the interval sn of each
measurement sn, each node αj, and each node βk, we obtain the follow-
ing system of interval linear double-side inequalities for parameters A and
BG: Azn,j,k + BG ∈ sn, n = 1, N , k = 1, K, j = 1, J.
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Interval approach. Special procedure [11 − 13]: oppor-
tunity of estimating (from below) the actual level of
corruptions in the sample
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Role of transforming the initial dependence to linear one
on parameters; usual box (parallelotope) procedures
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Incompleteness of the statistical approach results when
formally applied!
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Inadmissible results of formal application of the statis-
tical approach!
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Important detail of the interval approach

Under mentioned uncertainty, the notion of “confidence pro-

bability” loses the sense. Its role is played by the bound emax

of a variable level.

The work with the variable value emax is absolutely transpa-

rent and convenient for the researcher.
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V. Practical examples. Model 1 (β ≡ 0), curve 1, sections
of the informational sets on the grid {BGj}, emax = 0.01
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Practical examples. Model 1 (β ≡ 0), curve 1, informa-
tional set, general three-dimensional image
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Practical examples. Model 1 (β ≡ 0), curve 1, sections
of the informational sets on the grid {BGj}, emax = 0.01,
in the natural scale

24



Practical examples. Model 1 (β ≡ 0), curve 1, sections
of the informational sets on the grid {BGj}, emax = 0.01
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Practical examples. Model 1 (β ≡ 0), curve 1, sections
of the informational sets on the grid {BGj}, emax = 0.01,
in the natural scale
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Practical examples. Model 1 (β ≡ 0), curve 1, sections
of the informational sets on the grid {BGj}, emax = 0.01,
in the natural scale
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Practical examples. Model 2, curve 1, admissible inter-
vals [BG(βk)], on the grid {βk}, emax = 0.01
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Practical examples. Model 2, curve 1, an admissible
curve for βmin, emax = 0.01
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VI. Conclusions

Under mentioned conditions of uncertainty, the interval approach over-
comes the dead-lock situation and gives constructive description for the
subtle structure of the informational set of parameters. This allows one
to analyze validity of various models of the investigated process.

In practical cases, the developed hybrid “grid–analytical” algorithms for
constructing the informational sets of parameters (together with trans-
formation of variables) lead to fast computational procedures and provide
obtaining exact description of boundaries of informational set sections.

The limit values of the bounds e∗max onto the summary measuring er-
ror were found by the mentioned special interval procedure. The bounds
were at the level (1.0–1.5)%. It allows one to conclude that the chaotic
components of the measuring error are very small, the experiments were
performed with very high quality and sufficiently accurate results.
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Thanks for attention
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