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Problem statement

We consider interval linear algebraic system (ILAS) of the form

anry + appry + ... + @z, = by,
axr1 + axnry + ... + axpr, = by,
an1T1 + apaTy + ...+ AppTy, = by,
or, briefly,
Az =b,

with an interval n x n-matrix A = (a;;) and an interval n-vector b = (b;).



Solution set

The united solution set of the interval linear system is the set
Z(Ab) = {zeR"|(3Ac A)(Fbeb)(Az=D) },
formed by solutions to all the point systems Az =b with A€ An b€ b.

An interval matrix A is assumed to be nonsingular, that is, to contain nonsingular
point matrices. So, the solution set =(A, b) of the interval linear system is
bounded.



The problem of optimal outer estimation of the solution set to interval
linear system:

Find an interval vector U C TR", that has the least possible width and contains
the solution set =(A,b) of the interval linear system Az = b;

or in componentwise form:

find min{z, |z € Z(A,b)} and max{z, |z € Z(A4,b)}, v=1,2,.
or its most precise estimates from below and from above respectlvely.

We confine ourselves to computing only min{ z, | z € Z(A,b)}, since
max{z, |z € £(A,b)} = —min{z, |z € Z(A,-b)}

for fixed v.



Parameter partitioning methods

The main idea of parameter partitioning method

is refine sequentially outer componentwise estimates of the solution set to interval
linear system Ax = b by means of subdividing interval elements of the matrix A
and right-hand side vector b.

The solving of this problem is simplified if we take into consideration the following
result:

Beeck-Nickel theorem. If A is regular, then for any v € {1,2,...,n} exact
componentwise estimates of the points from the solution set,

min{z, |z € £(A,b)}, max{z, |z € Z(A,b)}

are attained at the so-called extreme matrices and right hand-side vectors made
up of the endpoints of A and b.



Notation:

Encl a fixed method that computes an enclosure of the solution set to
ILAS (we shall call it basic method);

Encl(A,b) € IR™ an interval enclosure, produced by the method Encl, of
the solution set to ILAS Az = b, i.e., Encl(A,b) O Z(A,b);
T(A,b) the lower endpoint of the v-th component (v =1,2,...,n) of
the interval enclosure Encl(A,b), i.e., T(A,b) := (Encl(A,b)),;
A’ v A" matrices obtained from A through replacing the element a;;
by the endpoints a;; and @;; respectively;

b' n b" vectors obtained from b through replacing the element b;
by the endpoints b, and b; respectively.

If the estimate T (A, b) is inclusion monotone with respect to A and b, then
having solved the two interval "systems-descendants" A’z = b" and A"z =b",
we can get better estimate for min{ z, | © € Z(A, b)} from below as

min{ T(A’,b), (A", b")}.



Parameter partitioning method

consists in sequential refining the estimate of min{ x, | v € (A, b)} by means of
partitioning the system Ax = b into two systems-descendants by breaking up to
the endpoints an interval element of the matrix A or the vector b.

We arrange the iterative procedure of the refining the estimate in accordance with
well known "branch-and-bound"method. For the natural stopping of the algorithm
it is required to reach the complete deintervalization of ILAS or the estimates with
accuracy lower than a small quantity ¢.

The algorithm is

@ adaptive, i.e., it considerably uses the information obtained at the preceding
steps of the algorithm;

@ sequentially guaranteeing, i.e., when executed, it generates a sequence of
approximate estimates min{ z, | x € Z(A,b)} from below.



Rohn’s methodology

For any square matrix A, the optimal outer estimates of the solution set =(A, b)
are reached at the set of no more than 2™ extreme solutions of Oettli-Prager
equation

|(mid A)z — mid b] =rad A - |z| + rad b.
Let £ be a set of n-vectors with components £1. For fixed o, 7 € £, the matrices
15, A" = {a7] } and the vector b7 = {b7 } are defined as

To‘ = dlag {017 . '7Gn}7

or Eij, If O'Z‘Tj = 71, bo Bi, If g; = ].,
Y ! b,, ifo;=-1.

Qij? If 0'7;7']' = ].7 ;,



Rohn theorem about extreme solutions. Let n X n-matrix A be nonsingular
and b be an interval n-vector. Then, for every o € £, the equation

mid A-z—T, -rad A-|z| =07
has a unique solution x° within Z(A, b) and there holds

conv Z(A,b) =conv {z7 | o € £}.

Rohn's method

consists in getting the optimal estimate of the solution set
by means of computing all extreme solutions and comparing them.

The algorithm is
@ passive;
o finally guaranteeing, i.e., it computes required optimal outer estimates
only after its natural stopping.



Rohn’s modification in PPS-algorithm

It follows from Rohn theorem that, for nonsingular matrix A, extreme
componentwise values for the points from the solution set are reached at the set
of 4™ matrices A°" and associated vectors b°

min{z, |z € Z(A,b)} = min ((477)'b7)

, v=12...,n.
o,TeE

While partitioning the parameters we look at the endpoints of the subdividing
interval elements of the matrix and right-hand side vector. In doing this, we
connect with every interval system Qx = r, produced at every step of the
algorithm, a check matrix W = {w;;} and check vectors s = {s;} and ¢t = {t;}
such that

71, If qij = Eija 71, If T, = bi’
Wi; = 0, if gq;;=ai, §; = 0, if r,=b,
1, if q;; = Q;;, 1, if T :Bz

wij:sitj, i,j:1,2,...,n.



The procedure of PPS-algorithm with Rohn’s modification
is performed subject to values of the check matrix W and vector s. When
subdividing an element g, of the matrix @ (an element 7 of the right-hand side
vector ),
e if wy; =0 (sx = 0), then two systems-descendants Q'x = 7’ and Q"'z = "
are begotten;
o if wy, = +1 (s = £1), then only one descendant is begotten, depending on
the sign of wy; (sk)).

After partitioning the leading ILAS, the check matrices and vectors for the
systems-descendants are calculated. If at least one object of the triple (W', s’ t')
is changed, the two remaining ones are recalculated according to the equalities
W5 = .Sﬂj,i,j = 172,...771.

This procedure is being performed until the changes of (W', s',t’) stop.



Monotonicity test

Interval extensions of the derivatives of the v-th component of the solution x to the
system Qx = r with respect to elements of the matrix Q € Q and the vector r € r:

Ox,(Qr) _ 9z, (Q, 1) _
8Q1J - YTy, (’97“1- - yui7

where Y = (y,,) 2 { Q7' | Q € Q} is "inverse interval matrix" for Q.

IfQ = (qij) and 7 = (7;) are formed of the elements

c 0z, (Q,r .
9,9, % z0, [r,or], if 2251 >0
7 = a1 i 2mu(@, _ = N
q;; = [qijaqij]’ if # <0, T =9 [P, 7], if 9 <Q ™) < 0,
9ij> if int% 30, Ti, if int<Ey =T az”(Q LNEN 0,
qij

then min{z, |z € 2(Q,7)} = min{z, | z € Z(Q,r)}.

Monotonicity test

is useful to perform before the partitioning of the leading ILAS, which results in
deintervalization of some interval elements of its matrix.




Basic methods for enclosing

At every step of the algorithm we use the method (called a basic one) that
computes an enclosure of the solution set.

We used the following basic methods:
Krawczyk method,
modified Krawczyk method with epsilon-inflation,

o

°

@ interval Gauss method,

@ interval Gauss-Seidel method,
°

Hansen-Bleeck-Rohn procedure.

As a basic algorithm, we also used the procedure verifylss from INTLAB.



Structure of the working list and its processing

We also analysed the modifications of PPS-methods that implemented various structure
and ways of processing of the working list £, in which the results of the partitioning of
the interval linear system are stored:

@ the list £ is formed as an unordered list of records (a heap);

@ the records of the list £ are in ascending ordered with respect to the
estimate Y (Q,r);

@ in the list £, the ordered sublist £; of the active records, which has the fixed
maximal length, is separated, and the rest records are stored as a heap;

@ Pankov’'s method, in which a threshold constant ~y is defined and the ordered sublist

L~ of the active records is separated, for which T(Q,r) < ~v; the complement
L\L. is stored as a heap.

If, during the algorithm run the subset of active records £; or £, becomes empty, then a
new ordered subset is again formed from the list £. The threshold constant ~ is
recalculated for the subset L.



Algorithms implementation

The implementation of the introduced algorithms are done in Matlab with the
interval toolbox INTLAB.

In addition to the main scheme of PPS-method, we implemented its
modifications, that used:

@ Rohn’s technique for eliminating unpromising vertex combinations;

@ monotonicity test, with respect to the components
of the matrix and the right-hand side vector of the system;

@ various enclosure methods for interval linear systems;

@ various ways of processing of the working list, in which
the results of the partitioning of the interval linear system are stored.



Test interval systems

Example 1

Neumaier’s interval linear system:

o 0,2 - [0,2] [~1,1]
0,2 6 - [02] [~1,1]
0.2 [0.2 e 1,1]

where 6 is nonnegative real parameter. The matrix of Neumaier's system of even
order n is nonsingular if 6 > n, and the one of odd order n is nonsingular if

0 > v/n? — 1. While approaching 6 to boundaries of nonsingularity the size of
united solution set increases infinitely.




Example 2

Shary’s interval linear system:

n-LN  [a-1,1-8] -+ [a—1,1-4] [1—n,n—1]
[a—1,1-p] [n—1,N] oo Ja—=1,1-p4] B [1—n,n—1]
[a—1,1-8] [a—=1,1-08] ... [n—1,N] [1—n,n—1]

where n — dimension of the system (n >2), 0 <« < 8 <1, N — real number such
that N > n — 1. While 3 decreases, approaching zero, the matrix of the system
approaches to a singular one, and the solution set infinitely increases. By means of
varying relation between « and 3, we can modify the form of the solution set. The
optimal componentwise estimates of the solution set = are

min{z; |z € £} = —1/a,

max{z; |t €5} =1/a, i =1,2,...,n,

and they don’t depend on N.




Example 3

The interval linear system Ax = b with the matrix

1—r1+47] 0 0 1—r1+47]
a=| Lttt ! s
l—r,14+7r] 2-r247r] -+ [p—=1—-rn—-147r] [n—r,n+7]

and the right-hand side vector

[1-R,1+R)
[1-R,1+R]
b= _ :
[1—R,1+R]

where r, R — positive real numbers.




Results of numerical experiments

Example 1. Neumaier’s interval linear system.
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The characteristics of the properties of ILAS matrix
The spectral radius p of the matrix |(mid A)~!|-rad A:

p=p(|(mid A)~'|-rad A),

and the difference Ao between the least and the largest singular values of the
matrices mid A and rad A:

Ao = opmin(mid A) — opax(rad A).

Ris-Beeck criterion. Let an interval n X n-matrix A be such that mid A is
nonsingular and
p (|(mid A)7'-rad A) < 1.

Then A is nonsingular.

Rump criterion. Let an interval n x n-matrix A be such that
Omax(rad A) < omin(mid A),

then A is nonsingular.



Influence of the properties of ILAS matrix

For near-zero p and sufficiently large Ao the run time of the program is small. But it
exponentially increases for the matrices near the boundaries of singularity, i.e. if p — 1
and Ao — 0.

The run time dependence on characteristics p and Ao of Neumaier's system for the
various basic algorithms follows
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Example 2. Shary’s interval system.

N=25 N=30 N=35
a) n=20, =04, 5=0.6
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Basic algorithms:
¢ — interval Gauss method,
d — interval Gauss-Seidel method

e —Hansen-Bleeck-Rohn
procedure,

f— verifylss.




Example 3.

t(sec.) t(sec.)
120 700
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80 mb 00 b ) 4
ol | me we Basic algorithms:
wl md 301 ud a - Krawczyk method,
20 +———— .
2 me 100 me b — modified Krawczyk method,
uf f .
0 . - ¢ — interval Gauss method,
=01 =02 =01 r=02 d — interval Gauss-Seidel method,
a) n=50,R=0.1 b) n =100, R=0.2
e —Hansen-Bleeck-Rohn
t(sec) t(sec.) procedure,
1400 7 4000 f— verifylss.
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r=0.1 r=0.2 r=0.1 r=0.2
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Influence of the basic methods

The programs based on Krawczyk method and modified Krawczyk method are not
effective for the matrices near the boundaries of singularity. For these matrices the
programs based on interval Gauss and Gauss-Seidel methods work more quickly.

For the matrices with near-zero p and sufficiently large Ao, modified Krawczyk
method is more preferable than interval Gauss and Gauss-Seidel methods. It works
also better than Krawczyk method. However the use of these methods as the basic
algorithms are not recommended.

The procedure verifylss from the MATLAB toolbox INTLAB in whole
demonstrated quite good results.

All numerical experiments show that Hansen-Bleeck-Rohn procedure is the most
effective basic method.



Influence of structure of the working list and
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The way of organising the list as a heap is the least efficient.

The speed of list processing significantly increases if the records are ascending

ordered with respect to the estimate Y(Q, 7).
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Pankov’s way doesn’t increase significantly the run time of the algorithm.

The most preferable is the way in which the maximal length of the sublist of the

active records is fixed.



Comparison of the algorithms for the optimal
outer estimation of the solution set

We developed the algorithm 1inppse implemented the modification of
PPS-method with Rohn’s modification in which

o Hansen-Bleeck-Rohn procedure is used as the basic algorithm,

@ in the working list the ordered sublist of the active records, which has the
fixed maximal length, is separated, and the rest records are formed as a heap.

We compare it with the algorithm verintervalhull — procedure from the
toolbox VERSOFT based on Rohn’s method.
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The run time of the both algorithms grow exponentially with the dimension of the
system.

The run time of the procedure verintervalhull doesn't depend on the properties
of the interval matrix A and stay put for the different parameter values.

The speed of the algorithm linppse slows down if the matrix A is near the

boundaries of singularity.

For the large dimension n the procedure linppse is more efficient than
verintervalhull.



Thank you



Computational complexity of optimal interval
estimation

The problem of optimal interval estimation of the solution set to interval linear
system is NP-hard,that is, it is an intractable problem, which requires times that
are exponential functions of the problem size nl.

Numerical methods for solving these problems are similar to search algorithms of
discrete optimization and a little more better than exchaustive search.

IKreinovich V., Lakeyev A.V., Rohn J., Kahl P. Computational complexity and feasibility of
data processing and interval computations. — Dordrecht: Kluwer,1997:



NutepBanbHble meTtogbl Naycca n MNaycca-3einpgens

iHTepBanbHbIli MeToA [aycca ABNSE€TCS UHTEPBaJIbHBIM aHAJIOrOM XOPOLLO
M3BECTHOrO B NMHelHON anrebpe meTtofa uckntoueHus laycca, cocroswero B
npeobpa3oBaHin MaTprLbl CUCTEMbI K BEPXHEMY TPEYrosbHOMY Bugy (npsiMoii
X0f) 1 MOCNEA0BATENbHOM BbIYMCIEHNN 3HAYEHUA HEM3BECTHbIX (0bpaTHBbI xon).
AnropnTMm MeTOLa TaKOWi >XKe, KaK N B BELLECTBEHHOM CJIy4ae, TOJIbKO OH
onepupyeT UHTEPBaJIbHbIMU BEANYMHAMM C MOMOLLbIO Onepaunii MHTepBabHO
apudmeTunku.

utepBanshbiii metog Maycca-3eligens — ntepauyuoHHasi npoueaypa s
YTOYHEHNS BHELUHEN OL|EHKN MHOXECTBA PELLEHNIA.

Mycts x*) O Z(A,b) u A = (a;;) Takosa, ut0 0 ¢ @;; ansa i =1,2,...,n.
VYTOYHEHHYIO OLEHKY & HAaXOAUM Cieaytowmum obpazom

i—1 n

-, (k) - (k) .

Ti=x, N | b — E a;;&; — E a;;T; Jai, i=1,2,... n.
=1 j=it1

Ecnu paccrosiHue mexay BekTopamm x*®) n & Gonbwe 33[,aHHON Manoii
Ben4YnHbl € > 0, nonaraem

) gz k=0,1,2,....



Meton KpaB4iunka

MycTb nHTepBanbHasa nuHeliHas cuctema Az = b npegobycnosneHa obpaTHO
cpeateii matpuueii C = (mid A)~! n () — BHewHss oueHka MHOXeCTBa
pewennii Z(A,b).

[ns yTouyHeHus oueHkn (k) NPUMeHNM MTepaLoHHbIn MeTog Kpasuuka:
2z D (Cb+ (I —CcA)z™)na® | k=0,1,2,...,

rnoe B Ka4eCtBe Ha4aJbHOro I'IpVI6J'IVI)KeHI/I5| MO>XHO B3ATb BEKTOP

2 = ([~a.al..... [~a.a)),
_ bl 5
o= W B 1= CAl <1,

VITepayuonHblii npouecc OygeT oCTaHOBNEH B TOM Cllydae, KOrga pactosiHue
mexay Bektopamu D u 2(¥) Gyner HesHaUMTENLHO OTANYATBLCS OT HyAS.



MoaunduuyuposaHHsiii metoa Kpasyduka

Myctb d®) — BHewwHsis OLeHKa MHOXECTBA peLLeHnii Z(A,b— Axy), rge
ry = C - mid b.

[na yTo4HeHns1 oueHKn d(k) NpUMEHNM MOANULMPOBaHHbI MeTog Kpaeunka:
dF) (O - Az, + (I —cA)dP)nd®, k=0,1,2,...

VTepauuorHblii NpoLecc oCyLwecTBASIETCS C NOMOLLLIO «3MNCUJIOH-Pa3ayTusi», npu
KOTOPOM MHTEpBas d, MOJyHEHHbI HA TEKYLLEM LUare aaroputTMa, 3aMeHSIETCs Ha
obvemntowmii untepsan d. = d + [—¢,e|radd + [—n, 0] e, rae €, § — HekoTOpbIe
MaJible MOJIOXKNTEsIbHbIE BELEeCTBEHHbIE Yncna, e = (1,1,.. ., 1)T.

Monaras € = 0.1 n 7 — HaUMeEHbLUEE NONOXKNTENBHOE BELLLECTBEHHOE YNCIO,
npeacrasumoe 8 IBM, nonyunm ntepaunonnyto npoueaypy

d ) C(b— Azy) + (I — CA) (AP +0.1]-1,1]rad d + [—107, 10n] €),

k=0,1,2,...,

KpUTEpUEM OCTAHOBKIW KOTOPOU CIYXUT YC/IOBUE: a*+t) c g,



lNpouenypa XaHceHa-banka-PoHa

Mpouenypa XaHceHa-bnnka-PoHa ocHoBaHa Ha cnepytollem pesynbTaTe.

Teopema. [Mycts matpuya A = (a;;) € IR™ " apnsercs nHrepsanbHoii
H-matpuyeii n

ui = ((A)7'bl)i,  di = ((A)" i,
a; = (a;) — 1/d;, Bi = ui/d; — |bs],

rge (A) — komnapant matpuubl A, i = 1,2,...,n. Torga MHOXeCTBO peLueHuii
Z(A,b) cogepxutcs B untepanbHOM BekTOpe & = (IT;) C KOMIOHEHTAMU
b+ Bi[—1,1] .
P =, 1=1,2,...,n.
a;; + o[—1,1]

[nsi oueHKM ceepxy ay; 1 [; BHIMUCNAETCS BepXHss OueHka B = B + vw '

matpuupbl (A)~! rae B — HekoTopas ouerka (A)~!, wy = max; 75““

R= <A>B —I,v= Bu a B KAYeCTBE U MOXXHO B35Tb €4MHUYHbIA BEKTOP
1,...,1).



Comparison of the algorithms for the optimal
outer estimation of the solution set

We compare the efficiency of the following algorithms:

linppsr — the procedure based on PPS-method with Rohn's modification,
in which Hansen-Bleeck-Rohn procedure is used as the basic
algorithm and in the working list the ordered sublist of the active
records, which has the fixed maximal length, is separated, and the
rest records are formed as a heap;

verintervalhull — procedure from the toolbox VERSOFT based on Rohn's
method.



