







### Contents

- Tracking control and stabilization of desired operating points for control systems with uncertainties
- Different control methodologies
  - Exploitation of differential flatness, feedback linearizing control laws
  - Sliding mode control
  - Model-predictive control
- Interval-based model-predictive control for uncertain systems
- Illustrative example: Trajectory tracking and overshoot prevention
- Model-predictive control for SOFC models with uncertainties
- Detection of overestimation in interval-based predictive control laws
- Extensions to sensitivity-based state and parameter estimation
- Conclusions and outlook

# Tracking Control for Continuous-Time Dynamical Systems

Consider a dynamical system with

- the state equations  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{p}(t), \mathbf{u}(t), t)$
- the output  $\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t))$ , for example, measured data  $\mathbf{h}(\cdot)$



• the desired output trajectory  $\mathbf{y}_{d}\left(t
ight)$ 

# Tracking Control for Continuous-Time Dynamical Systems

Consider a dynamical system with

- the state equations  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{p}(t), \mathbf{u}(t), t)$
- the output  $\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t))$ , for example, measured data  $\mathbf{h}(\cdot)$



• the desired output trajectory  $\mathbf{y}_{d}\left(t
ight)$ 

Necessity for state/ output feedback to prevent the violation of feasibility constraints in the case of parameter uncertainties as well as measurement and state reconstruction errors.

### **Tracking Control for Differentially Flat Systems**

Differential Flatness of *Nonlinear* Dynamical Systems  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$ 

A dynamical system is called differentially flat, if flat outputs

$$\mathbf{y} = \mathbf{y} \left( \mathbf{x}, \mathbf{u}, \dot{\mathbf{u}}, \dots, \mathbf{u}^{(lpha)} 
ight)$$

exist such that

(i) all system states x and all inputs u can be expressed as functions of the flat outputs and their time derivatives:

$$\mathbf{x} = \mathbf{x} \left( \mathbf{y}, \dot{\mathbf{y}}, \dots, \mathbf{y}^{(\beta)} \right) \qquad \text{and} \qquad \mathbf{u} = \mathbf{u} \left( \mathbf{y}, \dot{\mathbf{y}}, \dots, \mathbf{y}^{(\beta+1)} \right)$$

(ii) the flat outputs y are differentially independent, i.e., they are not coupled by differential equations.

#### Note:

- (a) If (i) is fulfilled, (ii) is equivalent to  $\dim(\mathbf{u}) = \dim(\mathbf{y})$ .
- (b) The flat outputs y need not be the physical outputs of the dynamical system.
- (c) For linear systems, differential flatness is equivalent to controllability.

### **Generalized Tracking Control for Dynamic Systems**

- Guaranteed stabilization of the error dynamics by interval evaluation of suitable Lyapunov functions to account for uncertainties
- Transformation of the state equations into nonlinear controller normal form: overcompensation of uncertainties
- Sliding mode control procedures, e.g. evaluated by means of interval analysis: see previous presentation
- Alternatively: Exploitation of inherent robustness properties of model-predictive control procedures

### **Generalized Tracking Control for Dynamic Systems**

- Guaranteed stabilization of the error dynamics by interval evaluation of suitable Lyapunov functions to account for uncertainties
- Transformation of the state equations into nonlinear controller normal form: overcompensation of uncertainties
- Sliding mode control procedures, e.g. evaluated by means of interval analysis: see previous presentation
- Alternatively: Exploitation of inherent robustness properties of model-predictive control procedures

(Interval-based) Predictive control approaches do not require an analytic reformulation of the state equations into a nonlinear controller normal form or into an input-affine system representation.

### **Generalized Tracking Control for Dynamic Systems**

- Guaranteed stabilization of the error dynamics by interval evaluation of suitable Lyapunov functions to account for uncertainties
- Transformation of the state equations into nonlinear controller normal form: overcompensation of uncertainties
- Sliding mode control procedures, e.g. evaluated by means of interval analysis: see previous presentation
- Alternatively: Exploitation of inherent robustness properties of model-predictive control procedures

(Interval-based) Predictive control approaches do not require an analytic reformulation of the state equations into a nonlinear controller normal form or into an input-affine system representation.

The usage of algorithmic differentiation allows for direct treatment of nonlinear system models.

#### **Sensitivity-Based Model-Predictive Control**



#### **Sensitivity-Based Model-Predictive Control**



- Sensitivity analysis for both analysis and design of control laws
- Consider a finite-dimensional dynamical system x
   (t) = f (x (t), ξ) with the state vector x ∈ ℝ<sup>nx</sup> (including observer state variables) and the parameter vector ξ ∈ ℝ<sup>nξ</sup> (including the system parameters p and the control inputs u)

Compute piecewise constant control inputs  $\mathbf{u}(t)$  for each time interval  $t \in [t_{\nu}; t_{\nu+1}), 0 \leq t_{\nu} < t_{\nu+1}$ .

### **Sensitivity Analysis of Dynamical Systems**

• Sensitivity of the solution  $\mathbf{x}(t)$  to the set of ordinary differential equations  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \xi)$  with respect to a **time-invariant parameter vector**  $\xi$ 

$$\frac{d}{dt} \left( \frac{\partial \mathbf{x} \left( t \right)}{\partial \xi_i} \right) = \frac{\partial \mathbf{f} \left( \mathbf{x} \left( t \right), \xi \right)}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x} \left( t \right)}{\partial \xi_i} + \frac{\partial \mathbf{f} \left( \mathbf{x} \left( t \right), \xi \right)}{\partial \xi_i}$$

### **Sensitivity Analysis of Dynamical Systems**

• Sensitivity of the solution  $\mathbf{x}(t)$  to the set of ordinary differential equations  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \xi)$  with respect to a **time-invariant parameter vector**  $\xi$ 

$$\frac{d}{dt} \left( \frac{\partial \mathbf{x} \left( t \right)}{\partial \xi_i} \right) = \frac{\partial \mathbf{f} \left( \mathbf{x} \left( t \right), \xi \right)}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x} \left( t \right)}{\partial \xi_i} + \frac{\partial \mathbf{f} \left( \mathbf{x} \left( t \right), \xi \right)}{\partial \xi_i}$$

• New state vectors  $(\mathbf{x} \in \mathbb{R}^{n_x}, \, \xi \in \mathbb{R}^{n_\xi})$ 

$$\mathbf{s}_{i}(t) := \frac{\partial \mathbf{x}(t)}{\partial \xi_{i}} \in \mathbb{R}^{n_{x}} \text{ for all } i = 1, \dots, n_{\xi}$$
$$\dot{\mathbf{s}}_{i}(t) = \frac{\partial \mathbf{f}(\mathbf{x}(t), \xi)}{\partial \mathbf{x}} \cdot \mathbf{s}_{i}(t) + \frac{\partial \mathbf{f}(\mathbf{x}(t), \xi)}{\partial \xi_{i}}$$

### **Sensitivity Analysis of Dynamical Systems**

• Sensitivity of the solution  $\mathbf{x}(t)$  to the set of ordinary differential equations  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \xi)$  with respect to a **time-invariant parameter vector**  $\xi$ 

$$\frac{d}{dt} \left( \frac{\partial \mathbf{x} \left( t \right)}{\partial \xi_i} \right) = \frac{\partial \mathbf{f} \left( \mathbf{x} \left( t \right), \xi \right)}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x} \left( t \right)}{\partial \xi_i} + \frac{\partial \mathbf{f} \left( \mathbf{x} \left( t \right), \xi \right)}{\partial \xi_i}$$

• New state vectors  $(\mathbf{x} \in \mathbb{R}^{n_x}, \, \xi \in \mathbb{R}^{n_\xi})$ 

$$\mathbf{s}_{i}(t) := \frac{\partial \mathbf{x}(t)}{\partial \xi_{i}} \in \mathbb{R}^{n_{x}} \text{ for all } i = 1, \dots, n_{\xi}$$
$$\dot{\mathbf{s}}_{i}(t) = \frac{\partial \mathbf{f}(\mathbf{x}(t), \xi)}{\partial \mathbf{x}} \cdot \mathbf{s}_{i}(t) + \frac{\partial \mathbf{f}(\mathbf{x}(t), \xi)}{\partial \xi_{i}}$$

• Initial conditions

$$\mathbf{s}_{i}(0) = \frac{\partial \mathbf{x}(0, \mathbf{p})}{\partial \xi_{i}} \quad \text{with} \quad \mathbf{s}_{i}(0) = 0 \quad \text{if } \mathbf{x}(0) \text{ is independent of } \xi_{i}$$

# Sensitivity-Based Control Using Algorithmic Differentiation (1)

• Define the control error

$$J = \sum_{\mu=\nu}^{\nu+N_p} \mathcal{D} \left( \mathbf{y} \left( t_{\mu} \right) - \mathbf{y}_d \left( t_{\mu} \right) \right)$$

between the actual and desired system outputs  $\mathbf{y}(t)$  and  $\mathbf{y}_d(t)$ , respectively, to achieve accurate tracking control behavior

Define the output y (t) in terms of the state vector x (t) and the control u (t) (assumed to be piecewise constant for t<sub>ν</sub> ≤ t < t<sub>ν+1</sub>) according to

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t))$$

• Compute the differential sensitivity of J using algorithmic differentiation

# Sensitivity-Based Control Using Algorithmic Differentiation (2)

• Correct the control input  $\mathbf{u}(t_{\nu})$  according to

$$\mathbf{u}(t_{\nu}) = \mathbf{u}(t_{\nu-1}) + \Delta \mathbf{u}_{\nu} \quad \text{with} \quad \Delta \mathbf{u}_{\nu} = -\left(\frac{\partial J}{\partial \Delta \mathbf{u}_{\nu}}\right)^{+} \cdot J \quad ,$$

where  $\mathbf{M}^+ := \left(\mathbf{M}^T \mathbf{M}
ight)^{-1} \mathbf{M}^T$  is the left pseudo-inverse of  $\mathbf{M}$ 

• Compute the differential sensitivity of the error measure  ${\cal J}$ 

$$\frac{\partial J}{\partial \Delta \mathbf{u}_{\nu}} = \sum_{\mu=\nu}^{\nu+N_{p}} \left( \frac{\partial \mathcal{D}\left(\mathbf{g}\left(\mathbf{x},\mathbf{u}\right) - \mathbf{y}_{d}\left(t_{\mu}\right)\right)}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}\left(t_{\mu}\right)}{\partial \Delta \mathbf{u}_{\nu}} + \frac{\partial \mathcal{D}\left(\mathbf{g}\left(\mathbf{x},\mathbf{u}\right) - \mathbf{y}_{d}\left(t_{\mu}\right)\right)}{\partial \Delta \mathbf{u}_{\nu}} \right)$$

with the property

$$\frac{\partial \mathbf{x} \left( t_{\nu-1} \right)}{\partial \Delta \mathbf{u}_{\nu}} = 0$$

• Evaluate  $\frac{\partial \mathbf{g}}{\partial \mathbf{x}}$  and  $\frac{\partial \mathbf{g}}{\partial \Delta \mathbf{u}_{\nu}}$  for  $\mathbf{x} = \mathbf{x}(t_{\mu})$  and  $\mathbf{u} = \mathbf{u}(t_{\nu-1}) + \Delta \mathbf{u}_{\nu}$ ,  $\Delta \mathbf{u}_{\nu} = 0$ 

# Extensions to Sensitivity-Based Control of Uncertain Systems — Algorithm

#### Stage 1:

- Allow for uncertainty in parameters and measurements
- Enclose time discretization errors in the computation of the control input

$$\mathbf{u}(t_{\nu}) = \mathbf{u}(t_{\nu-1}) + \Delta \mathbf{u}_{\nu} \quad \text{with} \quad \Delta \mathbf{u}_{\nu} = -\sup\left(\left(\frac{\partial \left[J\right]}{\partial \Delta \mathbf{u}_{\nu}}\right)^{+} \cdot \left[J\right]\right)$$

# Extensions to Sensitivity-Based Control of Uncertain Systems — Algorithm

#### Stage 1:

- Allow for uncertainty in parameters and measurements
- Enclose time discretization errors in the computation of the control input

$$\mathbf{u}(t_{\nu}) = \mathbf{u}(t_{\nu-1}) + \Delta \mathbf{u}_{\nu} \quad \text{with} \quad \Delta \mathbf{u}_{\nu} = -\sup\left(\left(\frac{\partial \left[J\right]}{\partial \Delta \mathbf{u}_{\nu}}\right)^{+} \cdot \left[J\right]\right)$$

**Stage 2:** Check for admissibility of the resulting solution with respect to state and input constraints

# Extensions to Sensitivity-Based Control of Uncertain Systems — Algorithm

#### Stage 1:

- Allow for uncertainty in parameters and measurements
- Enclose time discretization errors in the computation of the control input

$$\mathbf{u}(t_{\nu}) = \mathbf{u}(t_{\nu-1}) + \Delta \mathbf{u}_{\nu} \quad \text{with} \quad \Delta \mathbf{u}_{\nu} = -\sup\left(\left(\frac{\partial \left[J\right]}{\partial \Delta \mathbf{u}_{\nu}}\right)^{+} \cdot \left[J\right]\right)$$

**Stage 2:** Check for admissibility of the resulting solution with respect to state and input constraints

Stage 3: Adjust the control input if necessary according to worst-case overshoot

$$\overline{\Delta \mathbf{y}_{\nu}} := \max_{t \in \left[t_{\nu}; t_{\nu+\tilde{N}p}\right]} \left\{ 0; \sup\left(\left[\mathbf{y}\left(t\right)\right] - \mathbf{y}_{d}\left(t\right)\right) \right\}$$

# Extensions to Sensitivity-Based Control of Uncertain Systems — Example (1)

• Control of a double integrating plant

$$\dot{\mathbf{x}}\left(t\right) = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} \mathbf{x}\left(t\right) + \begin{bmatrix} 0\\ \frac{1}{m} \end{bmatrix} u\left(t\right) + \begin{bmatrix} 0\\ F_d \end{bmatrix} \quad \text{with} \quad m \in [0.9 \ ; \ 1.1] \ , \ F_d \in [-0.1 \ ; \ 0.1]$$

• Definition of the desired output trajectory

$$y_d(t) = x_{1,d}(t) = 1 - e^{-t}$$

with the inconsistent initial state  $\mathbf{x}(0) = \begin{bmatrix} -1 & 0 \end{bmatrix}^T$ 

- Direct computation of a piecewise constant control with a time-invariant step size  $t_{\nu+1} t_{\nu} = 0.01$  and N = 200
- Guaranteed admissibility of the solution in spite of bounded measurement errors

 $x_1(t) \in x_{1,m}(t) + [-0.01; 0.01]$   $x_2(t) \in x_{2,m}(t) + [-0.01; 0.01]$ 

# Extensions to Sensitivity-Based Control of Uncertain Systems — Example (2)

**Result:** Grid-based simulation of sensitivity-based approach without guaranteed overshoot prevention



# Extensions to Sensitivity-Based Control of Uncertain Systems — Example (4)

**Result:** Grid-based validation of sensitivity-based approach with guaranteed overshoot prevention



## Practical Application Scenario: Temperature Control for Solid Oxide Fuel Cell Systems (1)

• Control-oriented thermal SOFC model: Semi-discretization into  $n_x = L \cdot M \cdot N$  finite volume elements



- Introduction of the state vector  $\mathbf{x}^T = [\vartheta_{1,1,1}, ..., \vartheta_{L,M,N}] \in \mathbb{R}^{n_x}$  (piecewise homogeneous temperature values)
- Restriction to the configurations L = M = N = 1 and L = 1, M = 3, N = 1

## Practical Application Scenario: Temperature Control for Solid Oxide Fuel Cell Systems (2)

- Design of a predictive control procedure such that
  - System inputs and operating temperature stay close to the desired set-point
  - Large spatial gradients of the temperature distribution are penalized
  - Local violations of the maximum admissible cell temperature are prevented with certainty (in a rigorous formulation)
  - Temporal variation rates of the physical system inputs do not violate given bounds (in a weak formulation)

## Practical Application Scenario: Temperature Control for Solid Oxide Fuel Cell Systems (2)

- Design of a predictive control procedure such that
  - System inputs and operating temperature stay close to the desired set-point
  - Large spatial gradients of the temperature distribution are penalized
  - Local violations of the maximum admissible cell temperature are prevented with certainty (in a rigorous formulation)
  - Temporal variation rates of the physical system inputs do not violate given bounds (in a weak formulation)
- Sensitivity-based manipulation of the supplied mass flow of cathode gas as well as the temperature difference between the preheater and the inlet gas manifold of the SOFC

## Practical Application Scenario: Temperature Control for Solid Oxide Fuel Cell Systems (2)

- Design of a predictive control procedure such that
  - System inputs and operating temperature stay close to the desired set-point
  - Large spatial gradients of the temperature distribution are penalized
  - Local violations of the maximum admissible cell temperature are prevented with certainty (in a rigorous formulation)
  - Temporal variation rates of the physical system inputs do not violate given bounds (in a weak formulation)
- Sensitivity-based manipulation of the supplied mass flow of cathode gas as well as the temperature difference between the preheater and the inlet gas manifold of the SOFC



### **Interval-Based Predictive Control (1)**

**Result:** Cell temperature for the scalar system model (desired operating temperature: 850 K, max. admissible temperature 880 K with varying properties of the anode gas and the electric load)







#### with overshoot prevention

### **Interval-Based Predictive Control (2)**

**Result:** Cell temperature for the scalar system model (desired operating temperature: 850 K, max. admissible temperature 880 K with varying properties of the anode gas and the electric load)



### **Interval-Based Predictive Control (3)**

**Result:** Cell temperature for the system model with  $n_x = 3$  states (desired operating temperature: 850 K, max. admissible temperature 880 K with varying properties of the anode gas and the electric load)

Undesirable behavior after  $t = 11,000 \,\mathrm{s}$  can be predicted from simulations and avoided by a suitable supervisory control for the remaining system inputs

without overshoot prevention  $\vartheta_{1,1,1}$ ,  $\vartheta_{1,2,1}$ ,  $\vartheta_{1,3,1}$ 

with overshoot prevention



### Derivation of a Physically-Motivated Criterion for the Detection and Reduction of Overestimation (1)

- Prediction of the stack temperatures over the time horizon  $t \in [t_{\nu}; t_{\nu+N_p}]$ with  $N_p > 0$  steps and constant sampling time  $T := t_{\nu+1} - t_{\nu}$
- $\implies$  Overestimation in the state enclosures can make the predictive control procedure inefficient
  - Energy-related criterion for the **detection of overestimation**
  - Variant 1: Direct evaluation of

$$E_{\mu} := E(t_{\mu}) = \sum_{i,j,k} c_{i,j,k} \cdot m_{i,j,k} \cdot \vartheta_{i,j,k}(t_{\mu})$$

• Variant 2: Integral formulation (with typically tighter bounds)

$$E_{\mu} = E_{\nu} + \int_{t_{\nu}}^{t_{\mu}} \dot{E}(\tau) d\tau = E_{\nu} + \int_{t_{\nu}}^{t_{\mu}} \left( \sum_{i,j,k} c_{i,j,k} \cdot m_{i,j,k} \cdot \dot{\vartheta}_{i,j,k}(\tau) \right) d\tau$$

# Derivation of a Physically-Motivated Criterion for the Detection and Reduction of Overestimation (2)

- Simplification for state-independent and time-invariant parameters  $c_{i,j,k}$  and  $m_{i,j,k}$  which are identical for all finite volume elements
- Modified formulation
  - Variant 1: Direct evaluation of

$$E_{\mu} := E\left(t_{\mu}\right) = \sum_{i,j,k} \vartheta_{i,j,k}(t_{\mu})$$

- Variant 2: Integral formulation

$$E_{\mu} = E_{\nu} + \int_{t_{\nu}}^{t_{\mu}} \dot{E}(\tau) d\tau = E_{\nu} + \int_{t_{\nu}}^{t_{\mu}} \left( \sum_{i,j,k} \dot{\vartheta}_{i,j,k}(\tau) \right) d\tau$$

• Determine the offset  $E_{\nu} \in [E_{\nu}]$  on the basis of measured temperatures (including measurement tolerances and estimation errors)

# Derivation of a Physically-Motivated Criterion for the Detection and Reduction of Overestimation (3)

- Simplification for state-independent and time-invariant parameters  $c_{i,j,k}$  and  $m_{i,j,k}$  which are identical for all finite volume elements
- Modified formulation
  - Variant 1: Direct evaluation of

$$E_{\mu} := E\left(t_{\mu}\right) = \sum_{i,j,k} \vartheta_{i,j,k}(t_{\mu})$$

- Variant 2: Integral formulation

$$E_{\mu} = E_{\nu} + \int_{t_{\nu}}^{t_{\mu}} \dot{E}(\tau) d\tau = E_{\nu} + \int_{t_{\nu}}^{t_{\mu}} \left( \sum_{i,j,k} \dot{\vartheta}_{i,j,k}(\tau) \right) d\tau$$

Reduced overestimation on **variant 2** since the heat flow over boundaries between neighboring finite volume elements cancels out exactly (energy conservation: first law of thermodynamics!)

## Discrete-Time Formulation of the Predictive Control Algorithm (1)

- Determine state enclosure for  $t = t_{\nu}$ :  $\vartheta_{i,j,k}(t_{\nu}) \in [\vartheta_{i,j,k}(t_{\nu})]$
- Discrete-time evaluation of the state equations over the complete prediction horizon  $[t_{\nu} ; t_{\nu+N_p}]$ ,  $\mu > \nu$

$$\vartheta_{i,j,k}\left(t_{\mu}\right) \in \left[\vartheta_{i,j,k}\left(t_{\mu-1}\right)\right] + T \cdot \left[\dot{\vartheta}_{i,j,k}\left(t_{\mu-1}\right)\right] \quad \text{with} \quad \mathbf{u} = \mathbf{u}\left(t_{\nu-1}\right)$$

- Simultaneous evaluation of the performance criterion
- Evaluation of the corresponding sensitivities by means of algorithmic differentiation
- Overestimation criteria

$$E_{\mu} \in \sum_{i,j,k} \left[\vartheta_{i,j,k}(t_{\mu})\right] \quad \text{and} \quad E_{\mu} \in \left[\tilde{E}_{\mu}\right] := \left[E_{\nu}\right] + \sum_{\mu'=\nu}^{\mu} \left(\sum_{i,j,k} \left[\dot{\vartheta}_{i,j,k}(t'_{\mu})\right]\right)$$

# Discrete-Time Formulation of the Predictive Control Algorithm (2)

- Reduction of the conservativeness with respect to the maximum predicted temperature for all  $t \in [t_{\nu}; t_{\nu+N_p}]$  by the following consistency test
  - Subdivide  $\left[\vartheta_{i,j,k}\left(t_{\mu}\right)\right]$  into subintervals  $\left[\vartheta'_{i,j,k}\left(t_{\mu}\right)\right]$  along the longest edge
  - Evaluate

$$E'_{\mu} \in \left[E'_{\mu}\right] = \sum_{i,j,k} \left[\vartheta'_{i,j,k}(t_{\mu})\right]$$

for all subintervals of the predicted state enclosure  $[\vartheta_{i,j,k}(t_{\mu})]$ 

# **Discrete-Time Formulation of the Predictive Control Algorithm (2)**

- Reduction of the conservativeness with respect to the maximum predicted temperature for all  $t \in [t_{\nu}; t_{\nu+N_p}]$  by the following consistency test
  - Subdivide  $\left[\vartheta_{i,j,k}\left(t_{\mu}\right)\right]$  into subintervals  $\left[\vartheta'_{i,j,k}\left(t_{\mu}\right)\right]$  along the longest edge
  - Evaluate

$$E'_{\mu} \in \left[E'_{\mu}\right] = \sum_{i,j,k} \left[\vartheta'_{i,j,k}(t_{\mu})\right]$$

for all subintervals of the predicted state enclosure  $[\vartheta_{i,j,k}(t_{\mu})]$ 

- Classification of the resulting subintervals
  - Guaranteed caused by overestimation if  $[E'_{\mu}] \cap \left[\tilde{E}_{\mu}\right] = \emptyset$
  - Undecided for  $[E'_{\mu}] \cap \left[\tilde{E}_{\mu}\right] \neq \emptyset$  and  $[E'_{\mu}] \not\subseteq \left[\tilde{E}_{\mu}\right]$
  - Consistent for  $[E'_{\mu}] \subseteq [\tilde{E}_{\mu}]$ , where  $[\tilde{E}_{\mu}]$  denotes the result of variant 2

# **Discrete-Time Formulation of the Predictive Control Algorithm (2)**

- Reduction of the conservativeness with respect to the maximum predicted temperature for all  $t \in [t_{\nu}; t_{\nu+N_p}]$  by the following consistency test
  - Subdivide  $\left[\vartheta_{i,j,k}\left(t_{\mu}\right)\right]$  into subintervals  $\left[\vartheta'_{i,j,k}\left(t_{\mu}\right)\right]$  along the longest edge
  - Evaluate

$$E'_{\mu} \in \left[E'_{\mu}\right] = \sum_{i,j,k} \left[\vartheta'_{i,j,k}(t_{\mu})\right]$$

for all subintervals of the predicted state enclosure  $[\vartheta_{i,j,k}(t_{\mu})]$ 

- Classification of the resulting subintervals
  - Guaranteed caused by overestimation if  $[E'_{\mu}] \cap \left[\tilde{E}_{\mu}\right] = \emptyset$
  - Undecided for  $[E'_{\mu}] \cap \left[\tilde{E}_{\mu}\right] \neq \emptyset$  and  $[E'_{\mu}] \not\subseteq \left[\tilde{E}_{\mu}\right]$
  - Consistent for  $[E'_{\mu}] \subseteq [\tilde{E}_{\mu}]$ , where  $[\tilde{E}_{\mu}]$  denotes the result of variant 2
- Re-evaluate [J] for the reduced predicted overshoot  $\implies$  Perform the sensitivity-based control update as for the illustrative example

#### Interval-Based Predictive Control: Results (cont'd)

**Result:** Cell temperature for the system model with  $n_x = 3$  states (desired operating temperature: 850 K, max. admissible temperature 880 K with varying properties of the anode gas and the electric load)



*penalization of temperature gradients and extension by consistency test* 



### **Controllability Analysis by Backward Evaluation (1)**

**Backward integration** for the offline detection of admissible operating regions for the cell temperature



### **Controllability Analysis by Backward Evaluation (2)**

**Backward integration** for the offline detection of admissible operating regions for the cell temperature



# Sensitivity-Based State and Parameter Identification (1)

• General (vector-valued) performance criterion

$$\mathbf{J} = \sum_{i=k-N}^{k} \mathcal{D}\left(\hat{\mathbf{y}}(t_i) - \mathbf{y}_m(t_i)\right)$$

• Definition of a quadratic error measure

$$\mathcal{D}_{\mu} = \left(\hat{\mathbf{y}}(t_i) - \mathbf{y}_m(t_i)\right)^T \mathbf{P}_{\mu} \left(\hat{\mathbf{y}}(t_i) - \mathbf{y}_m(t_i)\right)$$

- Main challenge: Nonlinear dependency on optimization variables with a large number of measured data points  ${\cal N}$
- Underlying evaluation of the state equations: Explicit Euler method

$$\hat{\mathbf{x}}(t_j) = \hat{\mathbf{x}}(t_{k-N}) + \sum_{i=k-N}^{j-1} \Delta T \cdot \mathbf{f}(\hat{\mathbf{x}}(t_i), \mathbf{u}(t_i))$$

# Sensitivity-Based State and Parameter Identification (2)

• Output equation

 $\hat{\mathbf{y}}(t) = \mathbf{g}(\hat{\mathbf{x}}(t), \mathbf{u}(t)) , \quad \hat{\mathbf{y}} \in \mathbb{R}^{n_y}$ 

• Sensitivity analysis for the gradient-like procedure

$$\frac{\partial J_{\mu}}{\partial \hat{\mathbf{x}} (t_{k-N})} = 2 \sum_{i=k-N}^{k} \left\{ \left( \frac{\partial \hat{\mathbf{x}} (t_i)}{\partial \hat{\mathbf{x}} (t_{k-N})} \right)^{T} \left( \frac{\partial \mathbf{g} (\hat{\mathbf{x}} (t_i), \mathbf{u} (t_i))}{\partial \hat{\mathbf{x}} (t_i)} \right)^{T} \mathbf{P}_{\mu} (\hat{\mathbf{y}} (t_i) - \mathbf{y}_m (t_i)) \right\}$$

• Correction step

$$\Delta \hat{\mathbf{x}}(t_{k-N}) = -\alpha \left(\frac{\partial \mathbf{J}}{\partial \hat{\mathbf{x}}(t_{k-N})}\right)^{+} \cdot \mathbf{J}$$

with  $\hat{\tilde{\mathbf{x}}}(t_{k-N}) = \hat{\mathbf{x}}(t_{k-N}) + \Delta \hat{\mathbf{x}}(t_{k-N})$  and the optional step-size factor  $\alpha$ 

# Sensitivity-Based State and Parameter Identification (3)

• Newton-like procedure: Second-order approximation of  ${f J}$ 

$$J_{\mu}\left(\hat{\mathbf{x}} + \Delta \hat{\mathbf{x}}_{\mu}\right) \approx J_{\mu}\left(\hat{\mathbf{x}}\right) + \frac{\partial J_{\mu}}{\partial \mathbf{x}} \bigg|_{\mathbf{x}=\hat{\mathbf{x}}} \Delta \hat{\mathbf{x}}_{\mu} + \frac{1}{2} \Delta \hat{\mathbf{x}}_{\mu}^{T} \frac{\partial^{2} J_{\mu}}{\partial \mathbf{x}^{2}} \bigg|_{\mathbf{x}=\hat{\mathbf{x}}} \Delta \hat{\mathbf{x}}_{\mu}$$

• Update rule

$$\Delta \hat{\mathbf{x}}_{\mu}(t_{k-N}) := -\left( \frac{\partial^2 J_{\mu}}{\partial \mathbf{x}^2} \Big|_{\mathbf{x}=\hat{\mathbf{x}}} \right)^+ \left. \frac{\partial J_{\mu}}{\partial \mathbf{x}} \right|_{\mathbf{x}=\hat{\mathbf{x}}}$$

A. Rauh, L. Senkel, H. Aschemann: Sensitivity-Based State and Parameter Estimation for Fuel Cell Systems, Proc. of 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark, 2012.
 ⇒ Guaranteed proof of stability by procedure similar to verification of sliding mode state estimation:

A. Rauh, L. Senkel, H. Aschemann: *Interval-Based Sliding-Mode Observer Design for Nonlinear Systems with Bounded Uncertainties*, in preparation for ECC 2013, Zurich, Switzerland.

#### **Conclusions and Outlook on Future Work**

- Framework for sensitivity-based open-loop and closed-loop control with real-life applications
- Extension of sensitivity-based control to systems with interval uncertainties  $\implies$  Guarantee the compliance with state and control constraints
- Development of a general framework for interval arithmetic, sensitivity-based model-predictive control
  - $\implies$  Problem-dependent definition of corresponding cost functions

#### **Conclusions and Outlook on Future Work**

- Framework for sensitivity-based open-loop and closed-loop control with real-life applications
- Extension of sensitivity-based control to systems with interval uncertainties  $\implies$  Guarantee the compliance with state and control constraints
- Development of a general framework for interval arithmetic, sensitivity-based model-predictive control
   Problem-dependent definition of corresponding cost functions
- Extension of sensitivity-based control to state and disturbance estimation (duality of control and observer synthesis)
- Verification of (asymptotic) stability
- Gain scheduling for sliding mode control with interval uncertainties

